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ABSTRACT 
We augment the Mel cepstral (MFCC) feature representation 
with voicing features from an independent front end. The 
voicing feature front end parameters are optimized for 
recognition accuracy. The voicing features computed are the 
normalized autocorrelation peak and a newly proposed entropy 
of the high-order cepstrum. We explored several alternatives to 
integrate the voicing features into SRI’s DECIPHER system. 
Promising early results were obtained in a simple system 
concatenating the voicing features with MFCC features and 
optimizing the voicing feature window duration. Best results 
overall came from a more complex system combining a multi-
frame voicing feature window with the MFCC plus third 
differential features using linear discriminant analysis and 
optimizing the number of voicing feature frames. The best 
integration approach from the single-pass system experiments 
was implemented in a multi-pass system for large vocabulary 
testing on the Switchboard database. An average WER reduction 
of 2% relative was obtained on the NIST Hub-5 dev2001 and 
eval2002 databases.  

1. INTRODUCTION 

Most state-of-the-art speech recognition systems use Mel 
cepstral (MFCC) features as input features. The typical 
parameters of a MFCC feature front end (e.g., 25 ms window, 10 
ms frame rate) are a compromise solution chosen to represent all 
phones. Because of the constraint of a fixed single set of 
parameters, the MFCC features may fail to capture many 
discriminative cues that have longer or shorter time spans. 

We propose to augment the Mel cepstral feature 
representation with phonetic features computed with 
independent front ends. The parameters from each front end 
specific to a phonetic feature can be optimized to improve 
accuracy of a recognition system using the augmented feature. 
The front end parameters that can be optimized include the 
window duration and type, the fast Fourier transform (FFT) size, 
and others. A single frame rate must be set for all the front ends 
to be able to concatenate the features. The idea is that robust 
broad-class phonetic features could provide “anchor points” in 
acoustic phonetic modeling. While this is a general framework 
for multiple phonetic features, our initial approach explores the 
use of voicing features. 

Previous work in incorporating voicing features into speech 
recognition systems includes the following. In [1] experiments 
with an autocorrelation-based voicing measure are reported. 

Standard MFCC plus delta and delta-delta features were 
augmented by the voicing measure as well as its second and third 
derivatives. In [2] the fundamental frequency and a voicing 
measure were combined with MFCC features using linear 
discriminant analysis (LDA). In [3] three alternative voicing 
features were tested in combination with MFCC features using 
LDA. 

Our approach differs from previous work in a number of 
ways. First, we use a novel voicing feature, the entropy of the 
high-order cepstrum, in combination with a more standard 
autocorrelation-based voicing estimator. Second, we perform 
extensive optimization of the voicing front end for the 
recognition task. Third, the improvement we obtain exceed the 
one found in a recent comparable study, which had obtained 
about 1% relative reduction in word error rate (WER) on English 
conversational speech [2]. Finally we show that the improvement 
is preserved across the different stages of a multi-pass 
evaluation-type system.   

We explored several alternatives for integrating the voicing 
features into SRI’s DECIPHER large vocabulary recognition 
system [4]. In an initial system, we first concatenated the voicing 
features to the standard Mel cepstral features and optimized the 
window duration for the voicing feature front end. We extended 
the window duration to explore whether the voicing activity was 
captured more reliably with a longer time span. Then we 
explored integrating the voicing feature in a more complex 
recognition system with Mel cepstral features augmented with 
third differential features, using heteroscedastic linear 
discriminant analysis (HLDA) [7]. Different integration 
approaches were evaluated in this system, revealing the 
usefulness of a multi-frame window. Finally, a multi-pass system 
which includes adaptation, N-best generation, rescoring with 
more complex language models and confusion-network 
decoding, was built to evaluate the voicing features. All the 
training, testing, and optimization were done using 
conversational telephone speech (CTS) databases. 

The paper is organized as follows. Section 2 presents the 
voicing feature extraction algorithms. Section 3 presents voicing 
feature integration into SRI’s DECIPHER recognition system. 
Section 4 presents a multi-pass evaluation-type system. Section 5 
presents our conclusions.   

2. VOICING FEATURE EXTRACTION 
ALGORITHMS 

The first voicing feature used in this paper is the normalized 
peak autocorrelation, similar to the one described in [3].  The 
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second voicing feature used is a newly defined entropy of the 
high-order cepstrum. For the time windowed signal )(tx  of 

duration T  the high order cepstrum is defined as 
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window of duration T , zero padding is used prior to the 
computation of the DFT. The entropy of the high-order cepstrum 
is computed as follows. 
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The entropy is computed over the indexes r  and r�
corresponding to a pitch region from 80 Hz to 450 Hz. The 
entropy of the high-order cepstrum is a measure that depends on 
the complete cepstral vector, rather than on a single value. 
Therefore it should be a more robust measure. 

FIGURE 1: Voicing Features Graph 

We chose to use the two voicing features together because 
of the complementary behavior of the time-domain-based 
features and the frequency-domain-based features for high and 
low pitch values. For low pitch values, the pitch periods are well 
separated, enabling well-defined correlation peaks and therefore 
providing reliable voicing estimation. For high pitch values, the 
harmonics in the spectrum are well separated and the high-order 
cepstrum peak is well defined, therefore providing more reliable 
voicing estimation. 

Figure 1 shows the two voicing features for a waveform 
extracted from the Switchboard database. On top the waveform 
is presented. The “PEAK AUTO” graph corresponds to the 
normalized peak autocorrelation and the “ENTROPY CEPS” 
corresponds to the entropy of the high-order cepstrum. 

3. VOICING FEATURE INTEGRATION  

Here we describe the integration of the voicing features into 
SRI’s DECIPHER large vocabulary continuous speech 
recognition (LVCSR) system.  

3.1. Concatenating Voicing Features 
The initial approach was to concatenate the two voicing features 
described in the previous section with the traditional 13-
dimensional Mel cepstral feature vector (including energy) plus 
delta and delta-delta features (MFCC+D+DD), and then to train 
acoustic models with the resulting extended feature vector of 
dimension 41.  

TABLE 1: Temporal Window Duration Optimization 
of the Voicing Feature Front End. 

Recognition System % WER 

Baseline (No Voicing Features) 41.4 % 

Baseline + 2 Voicing (25.6 ms) 41.2 % 

Baseline + 2 Voicing (75.0 ms) 40.7 % 

Baseline + 2 Voicing (87.5 ms) 40.5 % 

  Baseline + 2 Voicing (100.0 ms) 40.4 % 

   Baseline + 2 Voicing (112.5 ms) 41.2 % 

   Baseline + 2 Voicing (125.0 ms) 41.1 % 

The voicing feature front end used the same frame rate as 
the standard feature front end. We optimized the window 
duration of the voicing feature front end to explore whether more 
reliable voicing activity estimation was achieved by increasing 
the temporal scope. Table 1 presents word error rate (WER) 
results, for both sexes, for different window durations of the 
voicing feature front end. 

The details of the experiment are as follows: Acoustic 
models were trained with a 64-hour subset of the Switchboard 1, 
CallHome English, and Switchboard Cellular databases. These 
models were of the Genone (bottom-up clustered) type [5], 
gender-dependent, and were trained with maximum likelihood 
estimation (MLE). The standard features used were 
MFCC+D+DD of dimensionality 39, with a 25.6 ms window 
every 10 ms. The two voicing features were concatenated to the 
standard features. Vocal tract length (VTL) and speaker mean 
and variance normalizations were performed on the standard 
features only, as the voicing features are self-normalized. The 
test was done on the NIST Hub-5 dev2001 database. A bigram 
language model was used in decoding. 

From Table 1 we see that using the voicing features with 
the same window duration as the standard front end produces a 
small WER reduction. As the window duration is increased the 
WER is further reduced. The optimum window duration for this 
task is found at 100 ms. These experimental results support the 
use of an independent front end, as clearly the optimal voicing 
feature window duration is different from the standard Mel 
cepstral feature window duration. The WER increases beyond 
the optimal point. For subsequent experiments a window 
duration of 75 ms was used in order to avoid being too close to 
the region where performance degrades sharply. 

The behavior of the WER as a function of voicing feature 
window duration may be explained as follows: a longer voicing 
window than the initial value results in a better spectral 
resolution and therefore in a better representation of the 
harmonic structure. This helps capture the voicing activity more 
reliably. For a very long window the pitch may vary inside the 
window and therefore the harmonic structure may be less 
defined, producing a less reliable voicing activity estimation.  
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3.2. Voiced/Unvoiced Posterior Probability Features 
In this experiment, the same concatenation scheme described 
above was used. This time, however, a log posterior feature was 
derived from a two state hidden Markov model (HMM) trained 
for voiced/unvoiced detection. This procedure is similar to the 
one presented in [6]. The normalized log frame energy and the 
two voicing features were used as input features for this HMM. 

TABLE 2: Voice/Unvoiced Posterior  
Feature from Two-State HMM. 

Recognition System % WER 
Baseline  39.2 % 

Baseline + Posterior Feature 39.7 % 

The HMM had one Gaussian per state and was trained in an 
unsupervised way for each sentence. The parameters were 
initialized so that one state represented a voiced region, and the 
other an unvoiced region.  

Once the HMM was trained, the log posterior probability 
corresponding to the voiced state was computed.  This log 
posterior probability was used as an additional feature and was 
appended to the MFCC features. The total feature dimension was 
thus 40. The experimental conditions were the same as described 
in Section 3.1. Results are presented in Table 2 (for male 
speakers only). 

Use of this feature actually degraded performance. One 
possible explanation for this result may be that the posterior 
probability feature may not represent the soft transitions between 
voiced and unvoiced segments. Analyzing the log posterior 
probability feature, we observed that it has sharp transitions 
between voiced and unvoiced states. A hard decision may not be 
well suited for multi-state models commonly used in acoustic 
modeling, and a smoothing scheme may be needed.  

3.3. Voicing Multi-Frame Window plus HLDA 
The next step was to integrate the voicing features into a more 
state-of-the-art front end, incorporating third differential features 
and the HLDA algorithm to reduce the feature dimensionality. In 
this system we extended the concatenation from single-frame 
voicing features to a multi-frame window of voicing features. 
The idea was to explore whether a linear combination of 
multiple frames of voicing features produced a more reliable 
voicing estimator than the voicing features from a single frame. 
The HLDA algorithm was applied to the combined feature 
vector, and the final feature dimension was 39. 

We optimized the number of voicing feature frames to be 
appended to the standard Mel cepstral feature. Table 3 reports 
the WER for a single-frame window, five-frame window and 
nine-frame window, for both sexes. In all cases the HLDA 
algorithm reduced the feature dimensionality to 39. 

In Table 3 we find that using single-frame voicing features 
results in a small WER reduction. Extending the number of 
frames to five leads to a further WER reduction. This shows that 
voicing activity is estimated more reliably by combining the 
voicing features from multiple frames. For a nine-frame window 
the gain was smaller. 

TABLE 3: Multi-Frame Window Optimization  
of Voicing Features plus HLDA. 

Recognition System % WER 
Baseline + HLDA 39.9 % 

Baseline + 1 frame, 2 voicing + HLDA 39.6 % 
Baseline + 5 frame, 2 voicing + HLDA 38.8 % 
Baseline + 9 frame, 2 voicing + HLDA 39.3 % 

The weighting of the window of voicing features produced 
by the HLDA algorithm in the five-frame window is similar to 
an average. This indicates that for improved recognition it is 
better to apply some temporal smoothing to the voicing features. 
�
3.4. Delta of Voicing Features plus HLDA 
As an alternative to the previous approach, we explored 
computing first and second differences of the voicing features 
instead of a multi-frame window of voicing features. The total 
number of voicing features per frame was six. The concatenation 
of the MFCC+D+DD features and the voicing features plus their 
deltas generated an extended feature, which was reduced with 
the HLDA algorithm to 39 dimensions. The recognition setup 
was the same as before. The WER results of this experiment are 
presented in Table 4 and include only male speakers. 

TABLE 4: Deltas of Voicing Features plus HLDA. 
Recognition System % WER 

Baseline + HLDA 37.5 % 
Baseline + Delta Voicing + HLDA 37.6 % 

�
We did not find any improvement using this feature 

representation, probably because the variability in the voicing 
features across frames produces deltas with high variance. 
�

4. TWO EVALUATION-TYPE EXPERIMENTS  

In Section 3 it was found that the best combination for 
integrating the voicing features was a five-frame window of 
voicing features together with the HLDA algorithm, using a 
window duration of 75 ms. This combination was integrated into 
SRI’s conversational telephone speech recognition system. 
Described below are two experiments evaluating the WER 
reduction obtained using the voicing features in evaluation-type 
multi-pass systems similar to those used for the NIST speech 
recognition evaluations [9]. 

4.1. A Multi-Pass Recognition System 
We trained within-word gender-dependent genonic triphone 
acoustic models with and without voicing features on 
approximately 418 hours of the Switchboard, CallHome English 
and Switchboard Cellular databases.  

We then tested a multi-pass recognition system on the NIST 
Hub-5 eval2002 database, which contains approximately 5000 
utterances from 120 speakers. This multi-pass system was tested 
with models with and without voicing features.  

In Pass 1, the acoustic models were adapted using a phone 
loop, and N-best lists were generated.  In Pass 2, the N-best lists 
were rescored with a 4-gram SuperARV almost-parsing language 
model [8]. In Pass 3, the N-best lists were rescored with duration 
models and decoded with a confusion network algorithm. The 
goal of Passes 2 and 3 was to improve the N-best lists in order to 
provide better hypotheses for unsupervised adaptation. In Pass 4, 
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a Maximum Likelihood Linear Regression (MLLR) adaptation 
of the non-cross-word models was performed using the 1-best 
hypotheses obtained from the rescored N-best lists. Lattices were 
generated from the MLLR adapted model and from these lattices 
new N-best lists were generated. Pass 5 was the same as Pass 2, 
but with the new N-best lists. Pass 6 was the same as Pass 3, but 
with the new N-best lists. The WER results after each pass, with 
and without the voicing features, are presented in Table 5 for 
both sexes. 

TABLE 5: Multi-Pass Recognition System 
 Test on EVAL2002 Database. Results in WER, 
 Relative Percentage Reduction in Parentheses  

System 
Without 
Voicing 
Features

With  
Voicing 
Features

1 Phone Loop Adapt.  
N-best Generation 

38.6% 37.8% (-2.1%) 

2
Rescored N-best with 

4-gram SuperARV 
Language Models 

34.7% 33.6% (-3.2%) 

3
Rescored N-best with  

Duration and Confusion 
Network 

33.6% 32.5% (-3.3%) 

4
MLLR Adaptation on  
1-best Hypotheses  

New N-best Generation 
36.5% 35.7% (-2.2%) 

5
Rescored new N-best with 

4-gram SuperARV 
Language Models 

31.5% 31.0% (-1.6%) 

6
Rescored N-best with  

Duration and Confusion 
Network 

30.6% 30.0% (-2.0%) 

In Table 5 we see that the gain from Pass 1 is a relative 
WER reduction of 2.1% compared to the system without voicing 
features. The gain increased after Passes 2 and 3, resulting in 
better adaptation hypotheses for the voicing feature models. 
After Pass 4, the gain from the voicing features is smaller, 
showing that the adaptation did not take full advantage of the 
better N-best lists from the voicing features. From the adapted 
model, lattices were generated in Pass 4. The lattice error rate 
was computed (which is the WER of the best possible word 
combination in the lattice) with and without the voicing features. 
The lattice error rate for the voicing features models was 4.41% 
and the lattice error rate for the models without voicing features 
was 4.46%. After rescoring the new N-best lists the final gain 
from the voicing features is 2.0% relative. It is worth noting that 
the relative gain from this new knowledge source, the voicing 
features, is preserved in this multi-pass system.  

4.2. Adaptation Experiment in Advanced Pass 
In this experiment, we used SRI’s complete evaluation system 
[9] and tested the effect of voicing features just prior to the final 
N-best rescoring stage. The acoustic models in this case are 
cross-word triphone models trained with maximum mutual 
information estimation (MMIE). The models both with and 
without voicing features have been adapted by a nine-transform 
full-matrix MLLR, based on prior recognition output from a 
separate PLP-based system that also incorporated voicing 
features. (We therefore expect less difference between the two 
contrasting systems.) The results are presented in Table 6. 

TABLE 6: Voicing Features In Advanced Pass  
Recognition System % WER 

Baseline EVAL 25.6 % 
Baseline EVAL + Voicing Features  25.1 % 

The relative WER reduction from the voicing features is 
again 2.0%, but now relative to a significantly better baseline 
than that used in the previous experiment.  
�

5. CONCLUSIONS  

We explored the integration of voicing features in a large 
vocabulary speech recognition system. We validated the use of 
an independent front end to compute the voicing features. After 
exploring several integration approaches, we found that the best 
was to combine a multi-frame window of voicing features with 
the MFCC plus third differential features, using linear 
discriminant analysis. We achieved a consistent gain across the 
different stages of a multi-pass system in evaluation-type 
experiments.  
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