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ABSTRACT

It is well known that spectrogram readers can classify different
phones from their spectral-time characteristics, such as the for-
mants. In this paper we present a novel acoustic model for phone
classification based on the implicit estimation of the spectral peak
trajectory as a polynomial time function. By making use of the
known relationship between the spectral peak information and the
cepstral coefficients, cepstral-based phone trajectories are built as
functions of the hidden spectral trajectories. This captures the in-
tuitive formant trajectories in the spectral domain while allowing
speech modeling to be done in the more familiar cepstral domain.
We have evaluated this hidden spectral peak trajectory model in
both vowel classification and phone classification tasks. On a sim-
ple single Gaussian model, the hidden spectral peak trajectory model
outperforms the HMM on both vowel and phone classification
tasks. The new can also be combined with the HMM model. This
combination performs better than a more complex HMM with sim-
ilar number of parameters.

1. INTRODUCTION

Segmental models have been proposed to capture speech temporal
correlations explicitly so as to relax the conditional independence
assumptions in HMM [1]. For example, the polynomial trajectory
model, which represents the temporal correlation as a polynomial
time function, has been shown to work well for both vowel and
phone classification [2] [3]. However, when the time function is
defined in the cepstral domain, which is the typical domain for
speech recognition, it is hard to visualize the shape because of the
high dimensionality. If the first and second order cepstral coef-
ficients are also modeled using polynomial trajectories, there is
also a consistency problem since they should be, by itself the time
derivatives of the cepstral coefficients.

The spectrogram, on the other hand, can easily be visualized
and human experts can distinguish between different phones by
reading their time-spectral patterns, in particular, the formant pat-
terns. Formants are the time function of resonances frequencies
of the vocal tract, which corresponds to the tracks of high en-
ergy points (spectral peaks) in the spectrogram. Because of the
distinguishing features of the formant patterns, the formants and
formants related parameters have been used for vowel classifica-
tion [4]. Furthermore, the formants can be sufficiently represented
by second or third order polynomials.

While it is desirable to model the time correlation using for-
mants or related features that can be visualized and sufficiently
represented by a low order polynomial, it is also desirable to keep
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the speech recognition modeling in the cepstral domain. Some re-
seaches suggested that a mapping function to be used to connected
these two domains [5]. This can also be achieved by taking advan-
tage of the relationship between the poles and zeros of the complex
spectrum and the cepstral coefficients. Applying trajectory model
in the spectral domain has the added advantage that a consistent set
of cepstral and cepstral derivative time functions can be derived.

In this paper we propose a hidden spectral peak polynomial
trajectory model (HSPTM) by assuming speech segments to be
generated by a set of hidden spectral peak trajectories. Each peak
is defined by two variables, the peak location and the bandwidth
which are equivalent to the phase and magnitude of a pole in the
complex spectrum. The trajectories of these peaks are assumed
to be polynomial time functions. Using the relationship between
spectral peaks and cepstral, similar to the LPC analysis, the spec-
tral trajectories in turn define a set of time varying cepstral trajecto-
ries that are modeled as the means of the segment. By making the
spectral peak trajectory hidden, one avoids the difficult problem of
explicitly estimating the spectral track.

The rest of the paper is organized as follows. In Section 2, the
spectral peaks representation for speech is presented. In Section 3,
the hidden modeling technique for the spectral peak trajectory is
introduced including the estimation of parameters and likelihood
computation. We also describe the prior models and phone a dura-
tion models, both of which improve the classification accuracy. In
Section 4, the experiments for both vowel classification and phone
classification are presented. The work is summarized in Section 5.

2. SPECTRAL PEAKS REPRESENTATION OF SPEECH

Instead of representing the formant tracks, which are not defined
for unvoiced sounds, we focus on modeling the poles of the com-
plex spectrum similar to the approach taken in linear prediction
(LP) analysis [6]. It can be shown that the center frequencies and
the bandwidths of the formants can be computed from the roots of
the predictor polynomial when an LP is used [7]. Furthermore, for
a given set of poles, the cepstral coefficients can be computed.
Consider the predictor polynomial 2p poles,

2p
A(z) = 1—Zaiz_l
i=1
2p

H(1 —ziz h). 1)

i=1

Let H(z) be the spectrum of the speech frame. Using the all-
pole model,
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Note that the roots z; can be expressed as
b o Ti
2 = efﬂﬁﬂzwﬁ, 3)

where fs is the sampling rate, b;, f; are the bandwidth, the center
frequency of the ¢-th root respectively.
Taking the logarithm on the transfer function and using the
Taylor series expansion, we have
log H(z)
p

p
log(G) — Zlog(l —ziz ) — Zlog(l —zizh
i=1 i=1

P &, phyk P & ik
= log(G)-{-ZZ lk +ZZ lk

i=1 k=1 i=1 k=1
- u 1 77rk‘b—i '27rk‘ﬁ 7'27rk‘ﬁ —k
= log(G) + Z( E@ Ts (eJ fs +e e ))Z
k=1 i=1
N 2 kb fivy_ —k
= log(G) +Z(Z z¢ s cos(27rkf—l))z 4)

k=1 i=1

.Given the roots, the cepstral coefficients can be computed by tak-
ing inverse z-transforms.
p

b; .
= Z %e_”kﬁ cos(27rk%), for k > 0. Q)

cr, 1s often called the LPC cepstrum because of the use of the all-
pole assumption for the spectrum.

In speech recognition, the derivatives of the cepstral coeffi-
cients are part of the features. Using Equation 5, the cepstral
derivatives can also be expressed as a function of the hidden spec-
tral peaks. To simply the discussion the rest of the theoretical
development assumes that only the cepstrum are used as features
with the understanding that it can easily be extended to include
cepstral derivatives.

i=1

3. SPECTRAL PEAK TRAJECTORY MODEL

One key piece of information in formants is the time correlation of
the track such as its shape and slope. These can not be captured in
a single short-time speech frame. Similarly for the spectral peaks,
a time function is needed to represent the temporal information.
Polynomial trajectory models have been proposed in for modeling
cepstral temporal function with some success [2] and can also be
applied to capture spectral-time correlation and the resulting track
be mapped back to the cepstral domain.

Applying the parametric trajectory modeling on the spectral
peaks, both the magnitude B;(n) and F;(n) are assumed to be
generated by the polynomial functions on a normalized time scale
as described in [2]. For an N-frame long speech segment, B;(n)
and Fj(n) are given by

Fz(t) = w0 Fwiit+ wi,2t2 4+ 4 wi,d—ltd71,
éz(t) = Bi,o + IBi,lt + ﬂi,th +t Bi,d—ltd_ly

where w;,¢ and 3; , are the polynomial coefficients for the i-th

_ m—1
track and t = .

3.1. Modeling speech segments in cepstral domain

In the cepstral domain, the speech frames are modeled in the same
fashion as in other segment model. That is, frame z(n) of an N-
frame segment X7" is viewed as generated by a time-varying tra-
jectory pug(n) and a zero-mean residue eg4(n) [2]. That is,

2(n) = p(n) + e(n). ®)

What is different is how 14 (n) is modeled. Denote the com-
plex spectrum of z(n) as H(n, z). Equations 2-5 can be modified
by adding the time index m. Thus, the ¢-th bandwidth and i-th
spectral peak, k-th cepstrum become b;(n), fi(n) and ci(n) re-
spectively. Equation 5 is rewritten as,

u bi(n) ;
ck(n) = %e_’”“ Fs cos(2mk fl;n) ),fork >0
i=1 s
p
= > %e_ﬂcB"(") cos(mkFi(n)),fork >0 (7)

i=1

where B;(n) = b;(n)/fs, is a function of the magnitude of the
spectral peak, and F;(n) = 2f;(n)/ fs is the normalized spectral
peak frequency in Hz.

The likelihood of the observation against model ¢ can be writ-
ten as,

Lo(@)) = L(x1;84 wer So)
= 317 log(2r) — 3 log(IS4))
2 @) = s ()25 (@ () = pro (m))118)

where X4 is the variance of ¢ and K is the dimension of z(n).
Denote pg(n, k) as the k-th component of pg ().

P

po(n k) =3

i=1

e ™FBio () cos(nkFi s (n)),

where Fy, By are the trajectories for the peak frequency and
the magnitude trajectory of phone ¢ respectively.

In the rest of the paper, ¢ will be removed from the variable to
simplify our notation unless it is needed to differentiate between
different phone models.

3.2. Parameter Estimation

The parameters in the hidden spectral peak trajectory models in-
clude the w;’s, B;’s and the X’s for each phonetic model. These
parameters can be estimated by maximizing the observation likeli-
hood defined in Equation 8. Because a closed form solution cannot
be obtained, the gradient descent method is used. The updated pa-
rameters w and B are given by:

Wi = Wi -—ELL"(:E{V)
" " Owi,;
N
—ou(n _
= wig = e "o ) — )
n=1 “J
where
op(n, k)

) -1\’
— _9re—kBi(n) F; n
“own; e sin(wkF;(n)) N=1)° )
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Fig. 1. Spectral peaks of an utterance ‘your headache’.

and
; AL (1)
By = By et
J J 98, ;
N T
-0 -
= By e T s ) - ),
n=1 3y
where )
J
%Tz’]k) = —2me "HBi(™) cos(kai(n))(;\L/___ll) . (10)

To maintain meaningful spectral peak tracks, constraints are
imposed on the locations of the tracks to restrict their range not
to exceed the sampling frequency, and keeping the spectral tracks
non-crossing. In Figure 1, the spectrogram of the utterance ‘your
headache’ and the corresponding estimated hidden spectral peak
tracks, is shown. It shows that the estimated quadratic spectral
peak trajectory can closely follow the visual formants.

3.3. Time-varying Variance

[8] proposes that time varying variance across a phone motivated
by the fact that co-articulation effect could have more influence on
phone boundaries. They show that phone classification accuracy
can be improved with the time varying variance. In their work, a
piece-wise constant variance function is used in which a segment
is uniformly partitioned into multiple region. Each region has its
own variance. Similar approach can be applied to HSPSM. If a
phone is partitioned into M regions ¢ = {(1, ..., a } of constant
variance X,, 1<s< M, these variances can be estimated simply by

g (@(n) — p(n))" (z(n) — p(n))
Count(N,) ’

I = an
where Count(Ns) is the number of frames belonging to segment
5.
The log-likelihood of the segment becomes

L) = 33 [ log(2m) — 5 log(IS.)
s=1n€ls

1 _
—(@(n) — p(n) 57" (2(n) — p(n)))- (12)
3.4. Prior and Duration Probability

In general, different phones occurs at unequal frequency. A prior
probability can be used to improve the performance of any phone

classifier. This prior probability can be estimated by counting
the number of occurrences in the training corpus. The duration
model is also introduced to improve the classification performance
as there are great differences in the duration of different phones.
The duration probability p(NN|¢) is modeled, following a Gamma
distribution, and the parameters of the distribution are estimated
from the training utterances.

With the prior probability and the duration probability, the
classification criteria can be written as,

¢ = arg max[Ly (21) + wa log(p(N]¢)) + wy log(p(4))],

where w, and wqy are the weighting for the prior probability and
duration probability as the dynamic range of the log-likelihood is
significantly larger.

3.5. Combination with HMM phone classifier

Besides using the formants frequencies trajectory model, we also
evaluated the combined HMM and formant frequencies trajectory
model by means of a weighted combination of their log-likelihoods.

b = argmax((l— @)Lo(e) + walog(p(Vl9)
+w, log(p($)) + aly (21,

where £ (1) HMM model likelihood and « is a constant weight-
ing on the two models.

4. EXPERIMENTS

To evaluate the performance of hidden spectral peak trajectory
model, a set of experiments on a speaker independent vowel clas-
sification and phone classification using the TIMIT database were
performed.

For both classification tasks, only ’sx’ and ’si’ sentences were
used for the training and testing. There are a total of 3696 train-
ing utterances and 1344 testing utterances and the standard TIMIT
training and test sets were used. The acoustic features consisted
of the first 12 LPCC with 12 poles (excluding the zeroth coeffi-
cients) and their first order derivative. The utterance based Cep-
stral Mean Subtraction (CMS) was applied to remove the channel
effect. For comparison, a three-state HMM model was trained for
each phone. For the spectral peak trajectory model, six spectral
peaks were used to model the spectral-time characteristics and the
variance of residual was assumed to be diagonal. While typically
three to four formants are sufficient to identify vowels, six peaks
are used partly to be consistent with the 12 LPC poles used in fron-
tend processing and partly to allow us more resolution as well as
ability to capture the shape of consonants. In addition, the effect of
using prior probability (P), duration probability (D), and the com-
bined HMM and spectral peak trajectory model, were evaluated.

4.1. Vowel Classification

The vowel classification task consisted of 16 different vowels and
diphthongs, /aa, ae, ah, ao, aw, ay, er, eh, ey, iy, ih, ow, oy, uh,
uw, ux/. The classifier was trained using the alignments and the
61 TIMIT labels defined in the TIMIT database. The results are
summarized in Table 1.

These results show that prior probability and duration prob-
ability play an important role in classification. Furthermore, the
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LPC analysis, showed that the set of spectral peaks can sufficiently
represent the unvoiced sounds.

The preliminary results reported in this paper for this new
model are very encouraging. While the performance of the hid-
den spectral peak trajectory model itself is no better than that of
the HMM, several limitations, such as the constraint on the frame
alignment within the model, the small number of mixtures, can
be relaxed. Furthermore, new improvements in segmental models
can also be integrated. Finally, the combined HMM and trajectory
model ensures the best results.

Model # parameters | Accuracy

per model
Spectral Peaks 108 47.18%
Spectral Peaks + P 109 50.08%
Spectral Peaks + D 111 50.56%
Spectral Peaks + P + D 112 52.60%
HMM + P 145 48.60%
HMM (2 mixtures) + P 289 50.81%
Spectral Peaks combined 256 53.21%
with HMM + P + D

Table 1. Performance of Vowel Classification; P: prior probabil-
ity, D: duration probability.

Model # parameters | Accuracy

per model
Spectral Peaks 108 47.10%
Spectral Peaks + P 109 51.73%
Spectral Peaks + D 111 50.87%
Spectral Peaks + P + D 112 55.77%
HMM + P 145 54.70%
HMM (2 mixtures) + P 289 57.20%
Spectral Peaks combined 256 58.06%
with HMM + P + D

Table 2. Performance of Phone Classification; P: prior probabil-
ity, D: duration probability.

hidden spectral peak trajectory model performs significantly better
than HMM. While the acoustic models currently tested are simply
single Gaussian models, the positive results are quite encouraging.
The combination of the HMM and the hidden spectral peak trajec-
tory model is better than using a HMM with two mixtures shows
that the hidden peak trajectory model is capturing useful informa-
tion not captured by the extra mixture in HMM.

4.2. Phone Classification

In the task of phone classification, 48 models were training ac-
cording to the phone list from Lee [9], and the classification re-
sults were folded into 39 different phone classes to determine the
classification accuracy. The results are tabulated in Table 2.

The results for the phone classification are similar to those ob-
tained for the vowel classification. This indicates that consonants
can also be classified using the spectral peak trajectory although
their formants do not exist. The combined HMM and the spectral
peak trajectory model shows improvements in the accuracy com-
paring to both single mixtures or two mixtures HMM.

5. DISCUSSION AND CONCLUSION

In this paper we proposed a novel approach for modeling speech.
We proposed a new cepstral trajectory model which, exploiting
the relationship between the spectral peaks and cepstral features,
is derived from the hidden center frequencies and the bandwidth of
the spectral peaks that are modeled as polynomial time functions.
For the voiced phones, the center frequencies of the spectral peaks
represent the formants. While there are no formants in unvoiced
speech sounds, experimental results, as well as experience from
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