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ABSTRACT

This paper presents a novel extension to vector quantization
referred to as Extended Cluster Information (ECI). In this
method the decoder retains more general statistics about the
VQ clusters found during codebook training than the single
prototypical point of conventional VQ systems. Typically
this information is unnecessary, however if the items be-
ing compressed are feature space vectors used as input to a
statistical pattern classification system, the extra probabilis-
tic information can be used during the classification as in
Bayes Predictive Classification (BPC) to improve recogni-
tion results. To demonstrate ECI-VQ, a simple experiment
is described where the Aurora2 distributed speech recogni-
tion front end is altered to provide more aggressive Mel Fre-
quency Cepstral Coefficient (MFCC) compression. As the
bit-rate drops, the corresponding recognition performance
suffers. It is then shown that using ECI-VQ as the input to
an Uncertain Observation (UO) speech recognizer, a num-
ber of errors due to compression can be corrected with no
extra cost in bit-rate.

1. INTRODUCTION

Standard vector quantization (VQ) achieves fantastic com-
pression rates for many scenarios. This is accomplished
by breaking the feature space for the problem into a finite
number of regions, and replacing individual, continuously-
valued samples in this space by a single prototypical value
representing the region containing the sample. For most
uses, the hard decision implied in VQ is appropriate. How-
ever, if the VQ step is the front end to a pattern classification
system, this hard decision represents an unnecessary loss
of information about the original sample. This paper de-
scribes a new extension to vector quantization referred to as
the Extended Cluster Information (ECI) method, that aug-
ments VQ output to probabilistically represent each cluster.
This extra information is embodied as a probability density
function, giving the likelihood at the decoder of any point in
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the feature space, given that some codebook cluster index i
was transmitted. This PDF can be determined at the time of
training of the VQ codebook, just as the standard single pro-
totypical point for each cluster is usually determined. This
PDF is then embedded into the design of the VQ decoder.
Transmission still consists of only a cluster index, but the
decoder can now give full cluster statistics as output.

To leverage this extra cluster information, the classifier
needs to have the ability to handle observations that are rep-
resented probabilistically. Such a method exists, and is of-
ten referred to as a Bayes Predictive Classifier (BPC) [1].
When a classifier has been trained using undistorted, non-
compressed features, BPC can integrate observation uncer-
tainty into the classification process in an optimal manner.

The new technique will be demonstrated in this paper
for the specific case of distributed speech recognition (DSR).
DSR often involves the VQ of MFCC feature vectors for
transmission to a remote speech recognition server. When
the VQ compression is aggressive, it will degrade recog-
nition performance. It will be shown that replacing stan-
dard VQ with ECI-VQ, and using an Uncertain Observation
(UO) decoder in place of a standard decoder, a significant
amount of performance lost due to compression can be re-
gained.

2. EXTENDED CLUSTER INFORMATION
VECTOR QUANTIZATION (ECI-VQ)

Training of a vector quantization system begins as shown
in the two-dimensional example in Figure 1(a). A large
amount of training data is separated into some finite number
of clusters, three in this case, ω+, ωx, and ωo. Feature space
is thus separated into I = 3 disjoint regions.

Standard VQ classification takes an input vector x, as
shown in Figure 1(b) and based upon the region where the
sample resides, assigns the sample to that cluster. For this
example, assignment is performed by calculating the dis-
tance dx, do, and d+ to each of the clusters, and assigning x
to the nearest, ω+ in this case.

For transmission, all that needs to be sent from the VQ
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coder to the VQ decoder is the index of the cluster. The stan-
dard VQ decoder will then replace the index with a single
prototypical point representing the cluster. For this exam-
ple, this prototypical point is the mean of the training data
assigned to the cluster, µ+, as shown in Figure 1(c).

This single prototypical point µ+ was found during VQ
codebook training, and stored in the decoder. Note that
there is no reason that further information about the cluster
could not also be stored in the decoder. Instead of making
a hard decision and choosing only a single point, the cluster
can be represented probabilistically, giving the likelihood of
any point in feature space, conditioned on receiving a clus-
ter index. This is shown graphically in Figure 1(d), giving
as VQ decoder output a Gaussian PDF with mean µ+ and
covariance σ+.

Several choices exist for how to represent the cluster
PDFs. Gaussian is a good choice, although as it has infi-
nite tails, it will give non-zero probabilities for points that
would have been assigned to other VQ clusters by the coder.
Another possibility is a uniform PDF over the region of fea-
ture space represented by the cluster. This is appropriate
only if all clusters represent finite regions.

A comparison of standard VQ and ECI-VQ flowcharts
are shown in Figure 2(a) and (b), respectively. The two
systems perform classification in an identical manner, and
transmit the same information over the channel. The only
VQ change is to the decoder, with ECI-VQ giving extra out-
put information (in this figure, Gaussian likelihoods) learned
during VQ codebook training, which can then be used in the
statistical classifier.

No matter which PDF is chosen, the final result is that
the bit-rate of the VQ system remains unchanged, but the
decoder is allowed to make soft decisions rather than the
conventional hard decision. The next step is to identify a
pattern classification method that allows observation uncer-
tainty.

It is worthwhile to briefly compare this method to fuzzy-
VQ, which allows the input sample to be described by sev-
eral VQ clusters, rather than only using a single cluster.
While this method also allows uncertainty about the clas-
sification to be passed to the decoder, there is a correspond-
ing increase in datarate, as all cluster indices must be trans-
mitted. For distributed recognition, this increased datarate
defeats the purpose of acheiving a low bitrate, thus fuzzy
VQ is not applicable to this problem. For systems that do
not have to transmit the VQ indices, of course, fuzzy VQ
remains a viable technique.

3. REVIEW OF UNCERTAIN OBSERVATION
DECODING

An interesting consequence of the extended cluster informa-
tion scheme described above is that it allows for arbitrary

(a)
VQ Training: Training
samples are grouped into
some number of clusters.

(b)

VQ Classification: In-
put sample x is assigned
to the nearest cluster
(here, x ∈ ω+).

(c)

Standard VQ Output:
A single point represen-
tative of x’s cluster (µ+

in this case).

(d)

ECI-VQ Output: The
PDF describing the like-
lihood Pr[x|ω+] (here,
represented by mean µ+

and covariance Σ+).

Fig. 1: Visualization of VQ training, VQ classification, standard
VQ output, and ECI-VQ output. Training and classifica-
tion (steps (a) and (b)) are the same for both standard VQ
output (shown in (c)) and ECI-VQ output (shown in (d)).

PDF descriptions to be generated as output from the VQ de-
coder. As several techniques have recently been developed
to use PDF descriptions of features for robust recognition
in place of the standard points in feature space [2, 3, 4],
ECI-VQ is ideal for performing robust speech recognition
decoding.

For this paper, ECI-VQ was used as a front-end to the
Uncertain Observation HMM decoding algorithm described
in [2]. Instead of calculating the state j output probability,
bj(x), for a frame of speech by finding the probability of
a single point, x, in space representing that speech frame,
the UO decoding algorithm finds the probability of all pos-
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Fig. 2: Flowchart of (a) standard VQ, and (b) ECI-VQ with Gaus-
sian likelihoods.

sible observations, weighted by their respective likelihoods.
Thus, the state output probability calculation is in general
specified as

Pr[yn|qt =j,Wn] =
∫ ∞

−∞
fn(ϑ)bj(ϑ) dϑ (1)

where fn(x) is some PDF describing Pr[x|yn,Wn], the
likelihood of unobserved clean speech feature vector xn be-
ing x given noisy observation yn and distortion model Wn.

For the particular case of a K mixture Gaussian speech
model and a single Gaussian speech observation PDF, the
likelihood distributions are

bj(x) ∼
K∑

k=1

N (µjk,Σjk) (2)

fn(x) ∼ N (µn,Σn) (3)

and the state output probability calculation for the UO de-
coding algorithm given in Equation 1 simplifies to [2]:

K∑
k=1

cjk N (µjk,Σjk + Σn)
∣∣
µn

(4)

An alternate implementation of particular interest for
ECI-VQ is the use of a uniform random variable represen-
tation for the observation. In this case, the state output like-
lihood given in Equation 1 is:

Pr [yt|qt =j,Wn] = Ai

∫
Ri

bj(ϑ) dϑ (5)

Cluster regions for VQ are almost certain to be non-rectangular,
and finding the boundaries for the integral is not necessarily
straightforward. Thus for this paper, only Gaussian obser-
vations were considered.

4. DEMONSTRATION EXPERIMENT

To demonstrate ECI-VQ, experiments using the Aurora2
distributed speech recognition framework were used. Three
changes were made to the baseline Aurora2 recognition ex-
periment. First, as the goal was to measure the drop in per-
formance due to MFCC feature compression, and not back-
ground noise, only clean speech was necessary for training
and testing. Training thus used all of the clean-training data,
and testing used only the Test A clean1 speech subset.

Second, the system was altered to only use the 13-di-
mensional static MFCC features, instead of the usual 39-
dimensions. This lowered the baseline performance, but al-
lowed the experiments to better focus on the effect of the
ECI-VQ method.

The third change was to alter the vector quantizer. The
baseline ETSI front end for DSR uses a split VQ quantizer
with a bit-rate of 4.8kbps, and gives no significant change in
performance compared to uncompressed features on clean
speech. ECI-VQ is designed for systems that have compres-
sion aggressive enough to cause classification errors, thus
the VQ step was altered to provide more compression. The
exact design of the VQ classifier was not particularly the is-
sue, only that the VQ be aggressive, thus rather than retrain-
ing a full new system, a low bit-rate system was approxi-
mated by altering the original ETSI quantizer. The original
system operated as seven independent streams, each operat-
ing on two cepstral or energy coefficients, using between 5
and 8 bits per stream. To generate a more aggressive quan-
tizer, each stream was reduced by two bits, by randomly
discarding codebook entries. This resulted in a new, more
aggressive VQ system with a bit-rate of 3.3kbps. This new
system showed a significant drop in recognition accuracy
due to the feature vector compression.

To implement ECI-VQ as described in Section 2, the
codebook training data is required in order to collect cluster
statistics. Since new codebooks were not trained, but de-
rived from an already-existing VQ system, the actual train-
ing data was not available. An alternate approach was taken
to get around this problem. The corpus of training data was
passed through the VQ system, and cluster indexes collected
for each frame. This allowed clusters to be generated for
each codebook index, approximating what would have been
found had the actual VQ training data been available.

For each codebook index, statistics about the clusters
obtained using the training data were embedded into the VQ
decoder. The cluster for each codebook entry was repre-
sented by a single-mixture Gaussian random variable with
diagonal covariance matrix. This allowed ECI-VQ to gener-
ate probabilistic features for an Uncertain Observation speech
decoder that used Equation 4 for the state output proba-
bility calculations. The next section describes the results
found when comparing the standard recognition method to
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the ECI-VQ method.

5. RESULTS

The baseline system was trained using speech that had not
been compressed. This was used to test two scenarios: un-
compressed clean speech, and speech compressed with the
3.3kbps VQ systems described above. Decoding operated
using only the single prototypical point in feature space given
by the standard VQ decoder. The results, shown in the first
two lines of Table 1, show that aggressive VQ causes a
significant drop in recognition performance. Although not
shown in the table, using the standard 4.8kbps VQ did not
adversely affect recognition from the non-VQ results.

A second baseline system was designed to model speech
and VQ distortion jointly, with speech models trained using
quantized feature vectors. Results from this method, in the
third line of Table 1 showed a tremendous drop in perfor-
mance, giving results worse than those found testing com-
pressed data against models trained on uncompressed fea-
ture data. One hypothesis for why seemingly mismatched
conditions perform better than this matched scenario is that
there is not enough training data to jointly model the two
systems, and more training data would fix this issue. A sec-
ond hypothesis is that the speech models in the recognition
system are using continuous density mixtures, which does
not correspond well to training with quantized features.

The final system tested uses speech models trained with
uncompressed speech, but testing uses a UO decoder receiv-
ing single mixture Gaussian probabilistic features from an
ECI-VQ decoder. Results, given in the fourth row of Ta-
ble 1, show that over one third of the errors induced by ag-
gressive VQ can be removed. For example, in the 3.3kbps
case, the standard method gives an error rate of 3.6%, 1.5%
above the 2.1% of the baseline system with no compres-
sion. ECI-VQ gives an error rate of 3.0%, only 0.9% above
the baseline, a 40% reduction in VQ-induced errors.

Table 1: Recognition results demonstrating ECI-VQ

training data testing data digit error rate
no VQ no VQ 2.1%
no VQ VQ 3.6%
VQ VQ 5.6%

no VQ ECI-VQ 3.0%

The experiments in this section used only clean data in
order to focus on ECI-VQ. An interesting side note, how-
ever, is that compressed noisy speech features show a drop
in recognition accuracy beyond that of uncompressed noisy
speech [5]. Noisy feature vectors are less well represented
in the VQ training data, resulting in compression using clus-

ters with higher variances. The explicit use of cluster vari-
ances to this scenario is thus an interesting future direction.

6. CONCLUSIONS

This paper has presented a new paradigm for extending the
output of vector quantization, called ECI-VQ for Extended
Cluster Information VQ. After classifying an input sample
using the VQ coder, the cluster index is transmitted as usual,
however instead of the VQ decoder giving a single proto-
typical point, the output is the likelihood of any point in the
feature space given the cluster index. Such a method is use-
ful when vector quantization is used in front of a statistical
classifier.

As an example, ECI-VQ was applied to a distributed
speech recognition task that uses quantized feature vectors.
By extending the speech recognizer to use probabilistic in-
put features that come out of ECI-VQ, the loss in recogni-
tion performance due to feature compression was cut nearly
in half, compared to using the output of standard VQ.

The speech recognition example showed an interesting
example of using training data to find cluster statistics on
an existing VQ system. The only constraint is that code-
book index that is transmitted must be visible, and thus pre
existing VQ systems can be adapted to give ECI-VQ output.

The net result of using ECI-VQ in front of a classifier,
such as the speech recognition example given in this paper,
is that it allows for the underlying data (ie, speech) to be
modeled separately from the distortion caused by quantiza-
tion. While these two can be modeled jointly, an indepen-
dent treatment is potentially beneficial.
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