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ABSTRACT

In this paper, we present methods to improve the computational
efficiency of our previously proposed algorithm for microphone ar-
ray processing for speech recognition, called Subband Likelihood-
Maximizing Beamforming (S-LIMABEAM). In S-LIMABEAM,
the parameters of a subband filter-and-sum beamformer are opti-
mized to maximize the likelihood of the correct transcription of
the utterance, as measured by the speech recognizer itself. This
approach has been shown to produce significant improvements in
recognition accuracy over conventional array processing methods
in a variety of noisy and reverberant environments. However, be-
cause of the manner in which recognition features are computed,
the number of subband parameters that have to be jointly optimized
may be large, which slows the convergence of the algorithm. To ad-
dress this problem, we present two methods of sharing parameters
among multiple subband filters in order to significantly reduce the
number of parameters to be optimized. Both of these methods ex-
ploit the spectral smoothing that occurs in the feature extraction
process, but do so in different ways. By sharing parameters in the
proposed manner, we are able to obtain a significant reduction in
the time to convergence of S-LIMABEAM with a minimal degra-
dation in speech recognition accuracy.

1. INTRODUCTION

Many microphone array signal processing techniques have been
proposed in the literature, e.g. [1]. These algorithms are almost
all signal enhancement algorithms. That is, their goal is to generate
an improved output waveform, as measured quantitatively by SNR
or other distortion criteria, or qualitatively through perceptual stud-
ies. For speech recognition using microphone arrays, one of these
such algorithms is used as a pre-processing step to generate an en-
hanced single-channel speech output signal which then gets input
to the recognition engine for feature extraction and decoding.

This approach to microphone-array-based speech recognition
makes the false assumption that generating an improved output
waveform will necessarily result in improved speech recognition
performance. However, a speech recognition system does not in-
terpret waveform-level information directly. It is a statistical pat-
tern classifier that operates by finding the word string that has the
maximum likelihood of generating the observed sequence of fea-
ture vectors. As a result, an array processing scheme can only be
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expected to improve recognition accuracy if it generates a sequence
of features which maximizes, or at least increases, the likelihood of
the correct transcription, relative to other hypotheses.

With this in mind, we previously proposed a new approach
to microphone array processing for speech recognition called
LIkelihood-MAximizing BEAMforming (LIMABEAM), in which
the speech recognizer itself is used to optimize the array processing
parameters [2]. In LIMABEAM, a filter-and-sum beamformer is
optimized to maximize the likelihood of the correct transcription,
as measured by the statistical models of the speech recognizer. To
specifically address speech recognition in highly reverberant envi-
ronments and the problems associated with the optimization of long
filters, we developed Subband LIMABEAM (S-LIMABEAM) [3],
which uses a filter-and-sum architecture in the subband domain.
Experiments showed that S-LIMABEAM was able to achieve sig-
nificant improvements in speech recognition accuracy compared to
conventional beamforming methods in a variety of noisy and rever-
berant environments. By applying subband filtering principles, the
number of parameters that need to be jointly optimized is signif-
icantly reduced compared to the equivalent fullband time-domain
filter-and-sum beamfomer. However, in some cases, the number of
parameters that need to be jointly estimated can still be quite large,
and as a result, the optimization is computationally expensive.

In this paper, we aim to improve the efficiency of
S-LIMABEAM. We propose two methods of sharing parameters
among different subband filters in order to reduce the total num-
ber of subband filter parameters that need to be jointly optimized.
Both methods exploit the spectral smoothing that occurs in deriving
speech recognition feature vectors from a frame of speech, but do
so in different ways. The proposed parameter sharing techniques
result in a significant reduction in the time to convergence of the
S-LIMABEAM algorithm with minimal loss in performance.

The remainder of the paper is organized as follows. In Section
2, we review the S-LIMABEAM algorithm. In Section 3, we de-
scribe the two proposed methods of sharing filter parameters. In
Section 4, we evaluate these parameter sharing schemes through a
series of experiments. Finally, some conclusions are presented in
Section 5.

2. SUBBAND LIKELIHOOD-MAXIMIZING
BEAMFORMING (S-LIMABEAM)

The goal of S-LIMABEAM is to find the set of array parameters ξ
that maximizes the likelihood of the correct hypothesis. We assume
that the speech recognizer is an HMM-based system and that the
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likelihood of the correct transcription can be largely represented by
the likelihood of the single most likely HMM state sequence. The
log-likelihood of the correct transcription can then be expressed as

L(ξ) =
T∑

i=1

log P (zi(ξ)|si) + log P (s1, . . . , sT ) (1)

where zi(ξ) is the feature vector for frame i, shown as a function of
ξ, P (zi(ξ)|si) is acoustic likelihood of zi(ξ) computed on HMM
state si, and P (s1, . . . , sT ) is the probability of the state sequence
{s1, . . . , sT }, computed from the HMM transition probabilities.

L(ξ) can be maximized by alternately optimizing ξ and the
state sequence. For a given ξ, the most likely state sequence can
be determined using the Viterbi algorithm. However, the manner
in which L(ξ) is maximized with respect to ξ is dependent on the
choice of array processing parameters and feature vectors.

2.1. Subband Filter-and-Sum Processing for Speech Recognition

In this work, we exploit the processing already performed in the
speech recognizer’s front-end in order to perform subband filtering.
Specifically, the windowing and the DFT serve as a filterbank and
the downsampling is accomplished by the framing process, e.g. a
25-ms window and a 10-ms frame shift. Thus, we can accomplish
subband processing in a manner well-suited for speech recognition
applications without any additional processing.

To perform subband processing, each signal in the array is di-
vided into a series of overlapping frames and each frame is win-
dowed and divided into subbands via a DFT. Each subband signal
from each microphone is then processed by a FIR filter. This pro-
duces a filter-and-sum architecture in the subband domain, which
can be expressed as

Yi[k] =

M−1∑

m=0

P−1∑

p=0

Hm∗
p [k]Xi−p

m [k] (2)

where Xi
m[k] is the value of the DFT in subband k captured by

microphone m at frame i, Hm
p [k] is the pth complex tap of the sub-

band filter assigned to microphone m and subband k and ∗ denotes
complex conjugation. M is the number of microphones and P is
the length of the subband filters.

In conventional subband processing schemes, the filter coeffi-
cients Hm

p [k] for a particular subband k are adapted independently
from the other subbands. However, closer examination of the fea-
ture extraction process reveals that for speech recognition purposes,
this is sub-optimal. In this work, we assume that mel frequency
cepstral coefficients (MFCC) will be used for recognition. MFCCs
are computed as the DCT of the logarithm of the mel spectrum. In
turn, the mel spectrum is derived from the DFT by computing the
energy in a series of weighted overlapping frequency bands. Each
component of the mel spectral vector is computed as a linear com-
bination of energy in a particular subset of DFT subbands. If we
define M l

i as the lth component of the mel spectrum of frame i and
V l[k] as the value of the lth mel filter applied to subband k, this
can be expressed as

M l
i =

l+∑

k=l−

V l[k]Yi[k]Y ∗
i [k] (3)

where l− and l+ are the DFT bins corresponding to the left and
right edges of the lth mel filter, respectively. Outside of this range,
the value of V l[k] is 0.

Substituting (2) into (3) clearly reveals that a given mel spectral
component M l

i is a function of the subband filter parameters of all
microphones and all subbands in the frequency range spanned by
its mel filter. Processing the subbands independently ignores this
relationship. A more optimal approach would consider this set of
filter coefficients jointly for each mel spectral component. In the
next section, we describe a method of doing so.

2.2. Maximum Likelihood Estimation of Subband Parameters

In order to efficiently optimize the subband filter parameters, we
assume that the components of the feature vectors are independent.
This is the same assumption used by the recognizer in modeling
the HMM state output distributions as Gaussians with diagonal co-
variance matrices. Under this assumption, the likelihood of a given
state sequence can be maximized by maximizing the likelihood of
each component in the feature vector independently.

We perform the parameter optimization in the log mel spectral
domain, because each log mel spectral component is a function of
only a subset of subbands, as shown in (3). Therefore, to maxi-
mize the likelihood of a particular vector component, we need to
optimize only those subband filters required to compute that com-
ponent.

We now define ξl to be the vector of subband filter parameters
required to generate the lth log mel spectral component. ξl is a
complex vector of length M · P · (l+ − l− + 1) covering all filter
taps of all microphones for the group of subbands from which the
lth mel spectral component is computed. Clearly, the length of ξl

varies depending on the width of its associated mel filter.
For each dimension of the feature vector l = {0, . . . , L − 1},

we want to maximize the log likelihood of the given HMM state
sequence with respect to ξl. Thus, if the HMM output distributions
are Gaussian and the observations are log mel spectra, we perform
L independent maximum likelihood optimizations of the form

ξ̂l = argmax
ξl

∑

i

−1

2

(
log M l

i (ξl) − µl
i

)2

σl 2
i

(4)

If ξl represents the subband filter parameters described in Section
2.1, then ξ̂l cannot be directly optimized because the array param-
eters and the features are related nonlinearly. Therefore, gradient-
based hill-climbing techniques must be used. The gradient vector
∇ξl

L(ξl) can be computed by substituting (2) and (3) into the like-
lihood expression in (4) and differentiating. The gradient expres-
sion can also be similarly computed for HMM output distributions
modeled as mixtures of Gaussians. A full derivation of the gradient
can be found in [4].

3. SHARING SUBBAND FILTER PARAMETERS IN
S-LIMABEAM

In S-LIMABEAM, L independent optimizations are performed,
one for each component of the log mel spectral vector. In each
optimization, M ·P · (l+ − l− +1) complex parameters are jointly
optimized. The values of l− and l+ are determined by the width of
the lth mel filter. For speech recorded at 16 kHz, a 512-point DFT
(corresponding to 256 subbands) and 40 mel filters are typically
used. With these values, the number of DFT bins in each mel filter
varies from 2 up to 23. Thus, for a modest number of microphones
and a filter length of a few taps, optimizing the subband filters cor-
responding to the widest mel filter may require a joint optimization
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of several hundred parameters. While this is significantly less than
the number of parameters required for an equivalent filter-and-sum
beamformer in the time domain, it is still quite high and therefore
time-consuming to optimize. To alleviate this problem, we pro-
pose two methods that reduce to number of parameters that need to
be jointly optimized in each of the L optimizations, and therefore
make the parameter estimation more efficient.

3.1. Sharing Parameters Within Mel Spectral Components

In this approach, subband filter parameters are shared across all
subbands that fall within a particular mel filter. For each log mel
spectral component, a single subband filter is optimized and used
by all subbands, rather than assigning a unique filter to each sub-
band. Because each log mel spectral component is now generated
using a common filter shared among all subbands, each filter pa-
rameter expressed in (2) is no longer a function of the subband
index k and can be identified by solely by its microphone index
m and its tap index p. As a result, a small change in the gradient
computation is required.

By sharing parameters in this manner, the number of param-
eters is reduced from M · P · (l+ − l− + 1) to simply M · P .
Clearly, the reduction in the number of parameters is proportional
to the number of subbands in a particular mel filter. For the lowest
frequency log mel spectral component, which is composed of only
two subbands, the number of parameters is reduced by 50%. For
the highest frequency log mel spectral component, composed of 23
subbands, the number of parameters required is reduced by 95.6%.

3.2. Sharing Parameters Across Mel Spectral Components

In S-LIMABEAM, the likelihood of each log mel spectral compo-
nent is maximized by optimizing a set of filters applied to that com-
ponent’s constituent subbands. Because of each mel filter overlaps
the adjacent mel filters by 50%, this results in two distinct filters
for each subband, one for each of the mel components to which it
contributes. This approach is well-suited to our assumption that the
components of the log mel spectral vector are independent, as each
component can be maximized independently, without affecting the
likelihood of the other components.

Although we make this independence assumption, adjacent mel
components are in fact highly correlated. The mel spectrum is de-
rived from the energy in overlapping frequency bands such that sub-
bands in the right half (higher frequencies) of one mel triangle are
also in the left half (lower frequencies) of the next mel triangle. It
is reasonable to expect, then, that for each subband, the two filters,
optimized for adjacent mel components, will be similar. Therefore,
we propose to reduce the number of total parameters to be esti-
mated by optimizing a single filter for each subband, which will be
used to generate both mel components.

The optimal way to estimate such a filter would be to jointly
maximize the likelihood of both log mel spectral components.
However, because of the overlap in subbands, jointly maximizing
the likelihood of two components cannot be done without maximiz-
ing the likelihood jointly over all mel components. This requires a
joint optimization over all subbands, which defeats the purpose of
subband processing entirely.

Instead, we assume that for the subbands used by two mel com-
ponents, the filter parameters that maximize the likelihood of one
mel component also maximize the likelihood of the next compo-
nent. In other words, the subband filter optimized when its corre-
sponding subband is in the right half of one mel filter is assumed to

be optimal for that same subband when it is in the left half of the
next mel filter. Thus, the components of the log mel spectral vector
are optimized in succession. For each component, the filters used
to optimize the previous component are copied and fixed, and only
the filters for new subbands (which will in turn be used for the next
component) are optimized. Sharing parameters in this manner re-
sults in a 50% reduction in the number of parameters estimated, as
each subband now has a single filter associated with it, rather than
one for each mel component to which it contributes.

4. EXPERIMENTAL RESULTS

To test the methods of subband parameter sharing proposed in this
paper, we performed speech recognition experiments on two mi-
crophone array databases. These databases were created using im-
pulse responses recorded by a 7-element linear microphone array
in rooms with reverberation times of 0.3 s and 0.47 s [5]. The inter-
element spacing of the array was 5.66 cm and the speaker was di-
rectly in front of the array at a distance of 2 m. Each corpus was cre-
ated by convolving utterances from the Wall Street Journal (WSJ0)
test set with the appropriate set of impulse responses. We refer to
each corpus with a subscript indicating the reverberation time, i.e.
WSJ0.30 and WSJ0.47.

Speech recognition was performed using the Sphinx-3 speech
recognition system with context-dependent continuous density
HMMs (8 Gaussians/state) trained on clean speech using the WSJ0
training set which consists of 7000 utterances. The feature vectors
used for recognition consisted of 13-dimensional MFCCs along
with their delta and delta-delta parameters. The subband filter pa-
rameters were optimized using a parallel set of HMMs trained on
log mel spectra.

In the first experiment, Unsupervised S-LIMABEAM was per-
formed on the WSJ0.3 corpus. In this method, optimization is per-
formed based on an estimate of the true utterance transcription. For
each utterance, conventional delay-and-sum beamforming was per-
formed and the resulting features were decoded in order to esti-
mate the transcription. Using this hypothesized transcription and
the delay-and-sum features, the most likely state sequence was es-
timated using the Viterbi algorithm. Based on this state sequence,
the subband filter parameters were then optimized and used to pro-
cess the utterance. Features were extracted from the subband filter
outputs and then a second pass of decoding was performed. Sub-
band filters with only a single tap were optimized. The results are
shown in Table 1.

The table shows both the Word Error Rate (WER) obtained us-
ing delay-and-sum beamforming and the proposed Unsupervised
S-LIMABEAM methods as well as the relative time to convergence
for the two parameter sharing methods, compared to the original
S-LIMABEAM algorithm without parameter sharing. As the table
shows, a 23% relative improvement over delay-and-sum processing
is achieved by Unsupervised S-LIMABEAM. Furthermore, by us-
ing the proposed methods for subband filter parameter sharing we
obtain a 40% reduction in the time to convergence with only a small
degradation in performance. Both parameter sharing techniques
still achieve an 18% relative improvement in WER over delay-and-
sum beamforming.

In the second experiment, we evaluated the proposed param-
eter sharing methods on speech captured in an environment with
substantially more reverberation, where longer subband filters are
necessary for effective compensation. In this case, Calibrated
S-LIMABEAM was performed on the WSJ0.47 corpus. In this cor-
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Array Processing Parameter WER Relative
Algorithm Sharing Time

Delay & Sum - 12.8 -
Unsuper S-LIMABEAM none 9.8 1.0
Unsuper S-LIMABEAM share within 10.4 0.64
Unsuper S-LIMABEAM share across 10.5 0.58

Table 1. WER and relative time to convergence for WSJ0.3

obtained using delay-and-sum processing and Unsupervised
S-LIMABEAM with and without the proposed methods of param-
eter sharing. Each subband filter had a single tap. The processing
time is shown relative to processing without parameter sharing.

Array Processing Parameter WER Relative
Algorithm Sharing Time

Delay & Sum - 59.0 -
Calib S-LIMABEAM none 37.9 1.0
Calib S-LIMABEAM share within 42.7 0.49
Calib S-LIMABEAM share across 39.6 0.58

Table 2. WER and relative time to convergence for
WSJ0.47 obtained using delay-and-sum processing and Calibrated
S-LIMABEAM with and without the proposed methods of param-
eter sharing. Each subband filter had five taps. The processing time
is shown relative to processing without parameter sharing.

pus, the speech was captured in a room with a reverberation time
of 0.47 s. In these experiments, the subband filter parameters were
calibrated for each speaker by selecting one utterance at random
to act as an enrollment utterance. For calibration purposes, the
transcription of only the enrollment utterance was assumed to be
known a priori. Using the known transcription of the enrollment
utterance and features derived from the output of a delay-and-sum
beamformer, the most likely state sequence was estimated as be-
fore. This state sequence was then used to optimize the subband
filter parameters. In this case, each subband filter had 5 taps, ef-
fectively spanning 5 frames. After calibration, the filter parameters
were fixed. No further optimization was performed and all remain-
ing utterances for that speaker were processed using the calibrated
filters. The results of this experiment are shown in Table 2.

The table shows the WER obtained using delay-and-sum beam-
forming, the original Calibrated S-LIMABEAM algorithm, and
Calibrated S-LIMABEAM with the two methods of parameter shar-
ing. Again, the table also shows the relative time to convergence for
the proposed parameter sharing methods compared to the original
S-LIMABEAM algorithm, when no parameters are shared. Using
the full Calibrated S-LIMABEAM algorithm, a 36% relative im-
provement over delay-and-sum beamforming is obtained. By shar-
ing subband parameters within each mel filter, the time to conver-
gence is reduced by 51% while still achieving a 28% relative im-
provement over delay-and-sum processing. If the parameters are
shared across mel filters, the degradation in performance is far less,
and the time to convergence is still reduced by over 40%.

Comparing the results in Tables 1 and 2, it is apparent that the
relative merits of the two parameter sharing methods proposed vary
depending on the number of parameters, i.e. the length of the fil-
ters, being estimated. When only a single tap is optimized for each
filter, sharing parameters within each mel filter generates better per-

formance but sharing parameters across consecutive mel filters is
more efficient. On the other hand, when the subband filter length
in increased to five taps, the opposite is true. Better performance
is achieved by sharing parameters across consecutive mel filters,
while better efficiency is obtained from sharing parameters within
each mel filter. Therefore, the decision to use one parameter shar-
ing method rather than the other can be made by considering the
desired filter length and the common trade-off between speed and
accuracy.

5. CONCLUSIONS

In this paper, we have sought to improve the efficiency of
the S-LIMABEAM algorithm for microphone-array-based speech
recognition. In S-LIMABEAM, the parameters of a subband filter-
and-sum beamformer are optimized in a manner which maximizes
the likelihood of the correct transcription of the utterance, as mea-
sured by the statistical models of the recognizer itself. By opti-
mizing the array parameters in this manner, we obtained a 29% av-
erage relative improvement in WER over conventional delay-and-
sum beamfoming in environments with moderate to significant re-
verberation. In order to reduce the number of parameters that need
to be jointly estimated in S-LIMABEAM and thus, improve the ef-
ficiency of the algorithm, we introduced two methods of sharing
parameters among multiple subband filters. In one method, the pa-
rameter sharing occurs within the subbands of each mel filter, and in
the other method, the sharing occurs across consecutive mel filters.
By sharing filter parameters in S-LIMABEAM using the proposed
approaches, we obtained an average reduction in the time to con-
vergence of 43% and maintained a 25% relative improvement in
WER over conventional delay-and-sum processing.

6. ACKNOWLEDGMENTS

This research was sponsored by the Space and Naval Warfare Sys-
tems Center, San Diego, under Grant No. N66001-99-1-8905. The
content of the information in this publication does not necessarily
reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. Michael L. Seltzer was
supported by a Microsoft Research Graduate Fellowship.

7. REFERENCES

[1] Michael Brandstein and Darren Ward, Eds., Microphone
Arrays - Signal Processing Techniques and Applications,
Springer-Verlag, New York, 2001.

[2] M. L. Seltzer and B. Raj, “Calibration of microphone arrays for
improved speech recognition,” in Proc. Eurospeech, Aalborg,
Denmark, September 2001, vol. 2, pp. 1005–1008.

[3] M. L. Seltzer and R. M. Stern, “Subband parameter optimiza-
tion of microphone arrays for speech recognition in reverberant
environments,” in Proc. ICASSP, Hong Kong, April 2003.

[4] M. L. Seltzer, Microphone Array Processing for Robust Speech
Recognition, Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA, July 2003.

[5] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Ya-
mada, “Acoustical sound scene database in real environments
for sound scene understanding and hands-free speech recogni-
tion,” in Proc. Int. Conf. Lang. Res. and Eval., Athens, Greece,
June 2000.

I - 884

➡ ➠


