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ABSTRACT

A novel speech segregation method using a microphone ar-
ray with multiple directivities is proposed and applied to
speech recognition under existence of disturbance speech.
Conventional microphone array techniques use only single
directivity of their own. It is very difficult for this kind of ar-
ray technique to remove the influence of the disturbance. In
our method, redundant simultaneous equations of the ampli-
tudes of sound sources are generated by using these multi-
ple directivities. The solution of these equations gives good
estimates of disturbances. The spectral subtraction is ap-
plied with these estimates of disturbances, and the perfect
enhancement of target speech is performed. The experimen-
tal results of double talk recognition with 20 K vocabulary
show that the proposed enhancement technique is effective
to achieve 45 % error reduction.

1. INTRODUCTION

In this paper, we propose a speech segregation method us-
ing a microphone array with multiple directivities, whose
number exceeds the sound sources.

Hands-free speech recognition has a wide range of ap-
plications, such as dictation systems of meeting, group con-
versation systems such as humanoid robots and car-navigation
systems. Hands-free speech recognition in a real environ-
ment requires high performance when several people talk si-
multaneously. Techniques of speech enhancement and noise
suppression are indispensable. Many efforts have been made
to solve this problem [1][2][3][4].

A microphone array is a very effective method to realize
speech enhancement and noise suppression, for example the
Delay and Sum (DS) array [3] and the Directionally Con-
strained Minimization of Power (DCMP) adaptive array [4].
However these techniques have several problems. As for
the beam-forming (DS array), to achieve noise suppression
in low frequency bands, a large number of microphones are
required. As for the null-steering (DCMP array), when there
is an error in sound source localization, the performance is

seriously hindered. The changes in the environment, par-
ticularly the transform function also seriously damage the
performance.

In our method proposed here, the array produces mul-
tiple directivity patterns, whose number exceeds the sound
sources. The multiple outputs of the array are analyzed by
short time Fourier transformation (STFT) with rather long
window. Using these short time spectra, the redundant si-
multaneous equations of the amplitudes of sound sources
are obtained. By solving them, the target speech and the dis-
turbance can be separated. The long window adopted here
contributes to simplify the equations because it enables to
ignore the correlation between target and disturbance, but
affect time resolution. Target speech obtained here cannot
be used for speech recognition directly because of their bad
time resolution. So we use the estimated disturbance to en-
hance the target speech. Select one output from the array
and apply STFT with short window. The spectra obtained
here are applied spectral subtraction (SS) using estimated
disturbance in the former stage. The enhanced speech in-
volves some distortion, such as musical noise, but the dis-
turbance can be almost completely removed.

In the following section, the algorithm of the proposed
method is described in detail. In section 3, the conditions
and results of the continuous speech recognition are de-
scribed. We give the conclusions in section 4.

2. PROPOSED METHOD

2.1. Formulation of the sound field

Figure. 1 shows the diagram of the proposed method. We
assume the environment where D sound sources exist and
the sound field is observed by M microphones. We define
the input vector x(k, t) as STFT of the input signal.

x(k, t) = [x1(k, t), · · · , xM (k, t)]T

xm(k, t) denotes the STFT coefficient at microphone m,
discrete frequency k, and frame t. Using the transform func-
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Fig. 1. Diagram of the proposed method.

tion, x(k, t) is written as follows [5].

x(k, t) = A(k)s(k, t) + n(k, t)

where,

A(k) = [a1(k), · · · , aD(k)]T

s(k, t) = [s1(k, t), · · · , sD(k, t)]T

n(k, t) = [n1(k, t), · · · , nM (k, t)]T

ad(k) denotes the transform function from d-th source to
the microphones at discrete frequency k. sd(k, t) denotes
the spectrum of d-th source. nm(k, t) denotes the spectrum
of the back-ground noise and the reverberation at micro-
phone m. [·]T denotes the transposition. From this, to sim-
plify the expression, we omit the symbol k and t.

2.2. Estimation of source spectrum

We describe the estimation of the source spectrum using the
number of directivity patterns more than the sound sources.
When a directivity pattern f1 is given to the input vector x,
the output y1 is written as follows.

y1 = f∗
1 · x

= f∗
1 · a1s1 + · · · + f∗

1 · aDsD + K1

= F11s1 + · · · + F1DsD + K1

[·]∗ denotes the complex conjugate. Fij represents the dot
product between f i and aj . Ki denotes the component of
the back-ground noise and the reverberation.

To make the problem simple, let us assume that two
sound sources exist in the sound field. The power spectrum
of y1 is calculated as

|y1|2 = |F11|2|s1|2 + |F12|2|s2|2 +
(F11s1) · (F12s2)∗ + (F11s1)∗ · (F12s2) + ε1

εi represents the error caused by the back-ground noise and
the reverberation. It is difficult to estimate the source power

spectrum in short-time because the short-time spectrum has
much correlation between each sound source. We divide
the observed signal into several blocks. The length of the
block is longer than that of the frame. The power spectrum
is calculated frame by frame and averaged in a block. If the
correlation between each sound source is lowered by the
averaging, the average power spectrum is given as

〈|y1|2〉 = |F11|2〈|s1|2〉 + |F12|2〈|s2|2〉 + ε1

〈·〉 denotes the averaging in a block. When P directivity
patterns are given to the input vector, Eq. 1 is obtained.

Y = F · s̄ + ε (1)

where,

Y = [ 〈|y1|2〉, 〈|y2|2〉, · · · , 〈|yP |2〉 ]T

s̄ = [ 〈|s1|2〉, 〈|s2|2〉, . . . , 〈|sD|2〉 ]T

ε = [ ε1, ε2, . . . , εP ]T

F =

⎛
⎜⎝

|F11|2 |F12|2 · · · |F1D|2
...

...
. . .

...
|FP1|2 |FP2|2 · · · |FPD|2

⎞
⎟⎠

Y denotes the average of the output spectrum given by P di-
rectivity patterns. s̄ denotes the average source power spec-
trum in the block. ε denotes the error. F denotes the gain
matrix given by the directivity patterns and the transform
function. Each component of F represents the contribution
rate of each source spectrum contained in the output vector
Y like as shown Fig. 2.

As a matter of fact, Y contains the error factor because
of the back-ground noise, the reverberation and the error of
the transform function itself. The source power spectrum
is estimated by minimizing the squared error εT ε using the
number of directivity patterns more than the sound sources.

min
s

εT ε ⇒ ∇sε
T ε = 0

s̄ = (F T F )−1F T Y (2)
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Fig. 2. Contribution rate of each source spectrum. (θ1, θ2

denote directions of arrival. f1, f2 denote directivity pat-
terns. F denotes the contribution rate of the source spec-
trum.)

2.3. Signal Reconstruction

After the estimation of the source spectrum by Eq. 2, the
disturbance spectra is removed by the SS. This processing
is carried out frame by frame in the block.

ŝ1 =

⎧⎪⎪⎨
⎪⎪⎩

∣∣|y1|2 − α · 〈|s2|2〉
∣∣ 1
2 · ejφ,

if |y1|2 − α · 〈|s2|2〉 > 0

0, otherwise

y1 represents the short-time spectra of the signal that the tar-
get source is emphasized or the signal that the noise source
is suppressed. 〈|s2|2〉 represents the long-term disturbance
spectra. α is an amplitude of the subtraction process. φ is
an appropriate phase function. For example, we can use the
phase of y1.

3. EXPERIMENT

3.1. Conditions

We recorded the speech data to enable continuous speech
recognition. First, a loudspeaker was arranged in front of
a microphone array. We recorded the single speech. The
distance between the loudspeaker and the microphone array
was d ( d = 100, 150 cm ). Next, two loudspeakers were
arranged according to the distance of d and the angle of θ
( θ = 45, 70 deg ). The loudspeaker arranged in front of
the microphone array was the target source. Another loud-
speaker was the noise source and was moved to vary exper-
imental conditions. We recorded the evaluation data totally
in four different arrangements.

The details of the microphone array and the experimen-
tal conditions are shown in Table 1. In the experiment, two
different speeches were played simultaneously. The utter-
ance length and volume were almost the same. The SNR
was almost 0 dB.

Table 1. Conditions of the microphone array and the experiment.

array form linear and consistent spacing
8 elements spaced 3cm apart

element non-directional condenser microphone
sampling 32 kHz, 16 bit
position shown at Fig. 3
evaluation data 100 sentences from 20 male speakers

from the ASJ-JNAS corpus [6]
mode vector 65536 point measured with TSP [7]

impulse length 1024 samples

d θ

7.6m

7.3m

3.6m

3.5m

Loudspeakers

Multi�media�studio�
Height:2.8m

Fig. 3. Configuration of the loudspeakers and the micro-
phone array ( d = 100, 150 cm, θ = 45, 70 deg)

3.2. Speech Processing

The directivity patterns used in the proposed method were
two DS array and two DCMP array. We totally used four
different directivity patterns. The estimation of the source
spectrum and the SS processing were conducted under the
conditions shown in Table 2. For the comparison, we carried
out only the DS array and only the DCMP array.

3.3. Speech Recognition

We carried out the continuous speech recognition. The acous-
tic features and the analysis conditions are shown in Table
3. The acoustic models are trained with 20 K sentences spo-
ken by about 100 male speakers from ASJ-JNAS corpus.
The training data is recorded with close-talk microphones.
The language models are the trigram language models using
lexicon of 20 K vocabulary size.

3.4. MLLR adaptation

In the proposed method, the disturbance is removed by the
SS. However the recovered target speech contain some char-
acteristic of the disturbance because of the residual distur-
bance spectrum or over reduction of disturbance. The dis-
continuity of the spectrum by the SS processing causes the
musical noise. The recovered target speech contains the
spectrum distortion even though humans can hear it with-
out feeling a sense of incongruity. The recognition perfor-
mance degrades because of the spectrum distortion. To im-
prove the performance, we adopt the MLLR-based acoustic
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Table 2. Analysis parameters.

frame length 32 ms
frame shift 8 ms
window Hamming window

block length 96 ms ( 9 frames )
block shift 16 ms

subtraction factor ( α ) 0.3

Table 3. Parameters of the acoustic features.
pre-emphasis 0.97
frame length 25 ms
frame shift 10 ms
window Hamming window
acoustic feature 12th MFCC+∆MFCC+∆ power

model adaptation with the recovered speech which contain
the characteristic of the proposed method. We attempt to
enable the speech recognition to be robust to the spectrum
distortion.

As for the adaptation data, we select phonetically bal-
anced sentences from ASJ-JNAS corpus. The adaptation
data have been recorded under the same conditions as the
evaluation data.

3.5. Results

Figure. 4 shows the results of continuous speech recogni-
tion. Word accuracy was over 94 % where the close-talk
microphone was used. In the case of one speaker, the perfor-
mance was high enough even when the distant microphone
was used. When it came to double talk recognition, the per-
formance seriously deteriorated. Word accuracy was about
7 %. The DS array and the DCMP array improved perfor-
mance. As for the DS array, the recognition performance
was only 25 %. The DCMP array, which steered null to-
ward the noise direction, showed higher performance than
the DS array. However the recognition performance was
still not sufficient.

On the contrary, the proposed method improved the per-
formance significantly. The recognition rate was over 70
% in word accuracy. This is 61 % and 45 % error reduction
compared to the DS array and the DCMP array respectively.
We could confirm the superiority of the proposed method
against the conventional array processing. Furthermore the
MLLR adaptation with the recovered speech improved the
performance and reduced errors by 28 %. The performance
of almost 80 % in word accuracy was achieved.

4. CONCLUSION

We have proposed the speech segregation method using a
microphone array with multiple directivity patterns, whose
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Fig. 4. Results of continuous speech recognition. (Each
thick bar represents the average recognition performance in
four experimental conditions. Line on the bar represents the
maximum and minimum performance.)

number exceeds the sound sources. Experimental results
showed the effectiveness of the proposed method. The er-
ror reduction was 45 % compared to the conventional ar-
ray processing. Furthermore, the recognition performance
was improved by the MLLR adaptation with the recovered
speech.
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