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ABSTRACT

This paper addresses the novel problem of recognizing
digits spoken simultaneously by two different talkers. A
Factorial Hidden Markov Model architecture is proposed
to accurately model the simultaneous utterance of two 
digits. Nadas’ MIXMAX approximation is extended to a 
mixture of Gaussians observation PDF which enables the
implementation of the proposed system. The multiple digit 
recognizer is found to successfully recognize pairs of 
simultaneous utterances of digits at 0db SNR with up to
89% accuracy. 

1. INTRODUCTION 

The idea of the Factorial Hidden Markov Model (FHMM)
was first developed by Ghahramani as an alternative to
traditional HMMs [1]. It has been shown that factorial
HMMs are better suited to model loosely coupled random
processes [1], [2]. Furthermore, efficient algorithms for
the estimation of parameters of FHMMs have also been 
developed [1]. Our approach is, however, a little different.
We use the FHMM architecture to combine two existing
HMMs of two independent random processes, i.e. the
simultaneous utterance of two digits. Since the isolated
digit HMMs have already been trained, no additional
training of the FHMM is required. Roweis showed that an 
FHMM can be used in such a way to model audio signals
from different sources for a computational auditory scene
analysis application [3]. We build on Roweis’ method for 
the recognition of two digits spoken simultaneously by
two speakers.

The motivation behind this model arose from the
observed interaction of the log spectra of two signals that
are additive in the time domain. Nadas et al. have shown
that an additive combination of two sound signals (or a
signal and noise) ( ) ( ) (Y j X j Z j )  can be 

accurately modeled by the element-wise maximum of
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Figure 1. Log spectrum MIXMAX approximation; (a) 
MFSC observation sequence of the digit ‘ONE’; (b) 
MFSC observation sequence of the digit ‘TWO’; (c) the
element-wise maximum of sequences (a) and (b); (d) the 
MFSC observation sequence generated from the addition
of the utterances of the digits ‘ONE’ and ‘TWO’ in the
time domain.

their log magnitude spectra. This is referred to as the
MIXMAX approximation [4].

log | ( ) | max(log | ( ) |, log | ( ) |)Y j X j Z j  (1.1)

The MIXMAX approximation also holds for Mel
Frequency Spectral Coefficients (MFSC) [5] as shown in 
Figure 1. 

In the following section, we present a short discussion
on the architecture of the factorial HMM, its topological
equivalence to an HMM and how its parameters can be
estimated given the parameters of the two HMMs it is
composed of. We also present our extension of the
MIXMAX output probability density result to a mixture
of Gaussians PDF. In sections 3 and 4, we describe the
implementation and testing of the simultaneous multiple
digit recognition system followed by a discussion of its
performance in section 5. 
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Figure 2. The combination of two HMM chains into an 
FHMM structure. 

2. THE FACTORIAL HIDDEN MARKOV MODEL 

We use a factorial HMM architecture with the same
structure as that proposed by Roweis [3]. The FHMM can 
be visualized as a pair of hidden-state Markov chains that
evolve independently of each other. Each of these states
produces an independent observation vector at each time
step. The output of the FHMM in every frame is simply
the maximum of the two outputs proposed by each chain
as described by Equation (1.1) and illustrated in Figure 2.

2.1. Topological Equivalence to an HMM 

Consider a factorial HMM with two chains (denoted by a 
superscript index) containing Q and R states respectively. 
This FHMM can be shown to be topologically equivalent
to an HMM with Q states [2]. The transition matrix

for such an HMM is given by

R

 (2.1.1) 1 2
1 ,

( , , )
1 ,

FHMM

i k j l

i k Q
a i j k l a a

j l R
where the states of the FHMM are indexed by the pair of
state indices of chains 1 and 2. 

2.2. The Output Probability Distribution

Methods for calculating the posterior probability of 
factorial HMMs have been formulated by Logan and
Ghahramani to overcome the large computations involved
[1], [2]. Roweis uses a log probability upper bound for a
similar reason to compute the best joint state trajectory. 
We propose a simpler approach that takes advantage of 
the MIXMAX approximation as well as the efficient
recognition algorithms that are already available for 
HMMs. To make this possible, we derive the output
probability distribution of the FHMM’s equivalent HMM. 
This is done by extending the results proposed by Nadas 
et al. to the case of a mixture of Gaussians observation
PDF.

Let the state indices of the two independent HMM
chains (denoted by a superscript index) that compose the
FHMM be q(t) and r(t), and let the proposed MFSC
observation vectors be ( )x t  and ( )z t  respectively. The 

output of the FHMM is given by,

( ) max( ( ), ( ))y t x t z t  (2.2.1) 

where max( ( ), ( ))x t z t  is the element-wise maximum.

Since the two processes are independent, it follows from
Equation (2.2.1) that,

( ) ( ) ( )y x zF F F  (2.2.2) 

 where ( ) ( ) ( )y yF P y p y dy  is the CDF of y .

Differentiating Equation (2.2.2) gives us the PDF of ( )y t .

( ) ( ) ( ) ( ) ( )y x z z xp p F p F  (2.2.3) 

which is the same result as that proposed by Nadas et al. 
[4].

2.3. Extension to a Mixture of Gaussians

Since each HMM state has an output probability density
function represented by a mixture of Gaussians, we can 
write,
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where M is the number of Gaussians in each mixture, c is 
the mixture coefficient and n is the dimensionality of the
output vectors.

Extending the results of Equation (2.2.3) to the HMM
output PDFs defined in Equation (2.3.1), the FHMM
output probability density function can be written as, 

1 2 2 1

, ( ) ( ) ( ) ( ) ( )
t ty y

q r t q t r t t r t q t tb y b y b z dz b y b x dx

 (2.3.2) 

where the superscripts denote the chain index. 
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The integrals in Equation (2.3.2) are the cumulative
density functions of 1 2( ) and ( )q t r tb x b z . The d-variate

Gaussians are assumed to be diagonal covariance
Gaussians to reduce the order of computation from O( )
to O( nd ). This assumption enables us to represent the
multivariate Gaussian as the product of d univariate 
Gaussians. Therefore, Equation (2.3.1) can be written as,

dn

2
, ,1

2
,1 1

1 1 ,

1
( )

(2 )

t p qm p

qm p

xnM

q t qm

m p qm p

b x c e  (2.3.3) 

where 2

,qm i  is the element at position (i,i) on the diagonal

of the covariance matrix .qm

The integral of the diagonal covariance Gaussian mixture
is therefore given by,

2
, ,1

2
,1 1

1 1 ,

1
( )

(2 )

t p qm pt t

qm p

xy y nM

q t t qm t

m p qm p

b x dx c e dx

 (2.3.4) 

The integral of the sum of the Gaussians is equivalent to 
the sum of the integral of the Gaussians. Also, since we
are representing an n-variate Gaussian as a product of n
univariate Gaussians, the integral to ty  of the product of 

Gaussians should be equal to the product of the integrals 
of each Gaussian to , where,t py ,1 ,2 ,, , ...,t t t t ny y y y .

Therefore, we get the following result for the CDF of n-
variate Gaussians, 

2
, , ,1

2
,1 1

,

1 1 ,

1
( )

(2 )

t p t p qm pt

qm p

y xy nM

q t t qm t p

m p qm p

b x dx c e dx

 (2.3.5) 

In other words, the CDF of every n-variate diagonal 
covariance Gaussian is just the product of the CDFs of the
n univariate Gaussians that it is composed of. 

Equations (2.3.2), (2.3.3) and (2.3.5) alone completely
specify the output probability density of the FHMM.

3. RECOGNITION SYSTEM 

The baseline isolated digit speech recognition system was 
built in Matlab with the help of routines provided by 
Kevin Murphy in the Hidden Markov Model Toolbox for 
Matlab [8]. Each model was designed with 8 states and a 
mixture of 120 Gaussians per state [6]. To generate the 
observation vectors, a 32ms frame of data was used to 

compute 20 Mel Frequency Spectral Coefficients. 
Adjacent frames of MFSC vectors were concatenated to 
produce the observation sequence. 

Each digit model was trained on 100 utterances by 50 
male speakers from the NIST/TIDIGITS speech corpus. 
On clean speech, the baseline system performed with a 
word recognition error rate of 3%. 

4. EXPERIMENTS

In this section, we evaluated the performance of the 
simultaneous multiple-digit recognition system on two 
distinct recognition tasks described in sections 4.1 and 
4.2. In each test, two utterances (produced by different 
speakers) from the TIDIGITS corpus were combined at 
0db SNR in the time domain, followed by the 
computation of an MFSC observation sequence. The 
recognition system was then presented with the task of 
finding the Factorial HMM (out of all combinations of 
allowed digits) that best modeled the mixed utterance. The
performance of the system was then compared with the
performance of the baseline system on the same task.

4.1. Recognition of ‘Signal’ Digit Given ‘Interference’
Digit

In the first set of experiments, one of the digits of the 
double-digit pair was treated as the ‘signal’ and the other 
as a known ‘interference’ at 0db SNR. The system’s
performance in recognizing the signal digit, given the 
knowledge of the interference digit, was tested for
different combinations of utterances of digits.

From the results, presented in Table 4.1, we can see 
that the multiple-digit recognition system showed an 
average relative improvement in word accuracy of 35% 
over baseline. 

4.2. Simultaneous Double-Digit Recognition

In the second set of experiments, the system was not given 
any prior information on either digit and its simultaneous
double-digit recognition performance was evaluated. A 
successful recognition of both digits was considered a
‘complete success’ (CS) and a recognition of one of the 
digits in the pair was considered a ‘partial success, partial
failure’ (PSPF). The average word accuracy per channel 
(recognition rate) was computed by,

0.5
Recognition Rate (%)

CS PSPF

N
 (4.1) 

where N is the total number of recognitions performed.
Table 4.2 lists the results from the double-digit 

recognition tests. The multiple digit recognition system
showed an average relative improvement in word 
accuracy of 105% over baseline. 
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TABLE 4.1 
Average recognition rates of the ‘signal’ digit, given the 
‘interference’ digit. S is the set of allowed digits; ID is the
interference digit; N is the total number of recognitions or 
trials; BRR is the baseline system recognition rate; P 
represents the case where FHMMs of pairs of the same
digit are allowed (i.e. ‘signal’ and ‘interference’ can be 
the same digit); NP represents the case where such models
of pairs of the same digit are not allowed. 

FHMM Average Word
AccuracyS ID N BRR

P NP

0 - 5 4 6 67% 83% 100%
0 - 8 3 45 55% 64% 68%

TABLE 4.2 
Average recognition rates for the task of simultaneous
double-digit recognition. N is the total number of 
recognitions or trials assuming no pairs of the same digit.
The CS/N column represents the ‘complete success’ 
recognition rate assuming no models of pairs of the same
digit.

FHMM Average Word
Accuracy per Channel S N BRR

CS

N P NP
5 - 8 6 67% 100% - 100%
4 - 8 40 36% 78% - 89%
1 - 5 50 38% 70% 78% 84%

5. DISCUSSION 

It is interesting to note that while the performance of the 
baseline system dropped in the second task, the 
performance of the double digit recognizer increased. This 
may be due to the fact that since the FHMM is designed to
model any combination of digits, it produces a higher 
overall accuracy in modeling a more diverse set of digit 
combinations.

Another observation that can be made from the results
is that the system cannot easily model simultaneous
utterances of the same digit by different speakers. This is 
because in the FHMM structure, each chain is competing
to explain the observation of the same digit, resulting in a 
drop in performance.

The multiple digit recognition system, besides being
able to recognize simultaneous utterances, can also be
used as a technique for robust speech recognition in non-
stationary noise. It has a similar range of word accuracy at 
0db SNR when compared to current highly robust speech 
recognizers [7].

However, while most standard methods for speech
recognition in noise (e.g. spectral subtraction, Wiener
filtering) assume stationary or slowly-varying background 
noise, the FHMM approach is robust for noise that is 
rapidly varying over a large dynamic range, like speech or 
music.

6. CONCLUSIONS

A factorial HMM modeling approach for the simultaneous
recognition of multiple digits has been presented. The
MIXMAX algorithm was extended to include mixtures of 
Gaussians which enabled the implementation of a 
simultaneous multiple digit recognition system. The
system was shown to have significant success in double-
digit recognition at 0db SNR.
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