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ABSTRACT

Currently, there are technology barriers inhibiting speech process-
ing systems working under extreme noisy conditions. The emerg-
ing applications of speech technology, especially in the fields of
wireless communications, digital hearing aids or speech recogni-
tion, are some examples of such systems often requiring a noise
reduction technique in combination with a precise voice activity
detector (VAD). This paper presents a new VAD for improving
speech detection robustness in noisy environments and the perfor-
mance of speech recognition systems. The algorithm uses long-
term information about the speech signal to formulate the decision
rule and estimates the subband SNR using specialized order statis-
tics filters (OSFs). The proposed algorithm is compared to the
most commonly used VADs in the field, in terms of speech/non-
speech discrimination and also in terms of recognition performance
when the VAD is used in an automatic speech recognition (ASR)
system. Experimental results demonstrate a sustained advantage
over different VAD methods including standard VADs such as G.729
and AMR which are used as a reference, the VADs of the Ad-
vanced Front-End (AFE) for distributed speech recognition (DSR),
and recently reported algorithms.

1. INTRODUCTION

Speech/non-speech detection is an unsolved problem affecting to
numerous applications. The classification task is not as trivial as it
appears and most of the voice activity detection (VAD) algorithms
often fail when the level of background noise increases. During the
last decade numerous researchers have studied different strategies
for detecting speech in noise and the influence of the VAD deci-
sion on speech processing systems. There exist well known noise
suppression algorithms [1, 2], such as Wiener filtering (WF) or
spectral subtraction, that are widely used for robust speech recog-
nition, and for which, the VAD is critical in attaining a high level of
performance. These techniques estimate the noise spectrum during
non-speech periods in order to compensate its harmful effect on the
speech signal. The VAD is more critical for non-stationary noise
environments since it is needed to update the constantly varying
noise statistics affecting a misclassification error strongly to the
system performance. A representative set of recently published
VAD methods formulates the decision rule on a frame by frame
basis using instantaneous measures of the divergence distance be-
tween speech and noise [3, 4]. It has been shown recently that
VAD robustness can be improved by using long-term spectral in-
formation to formulate the decision rule [5]. This paper explores
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a new strategy for detecting speech in noise using order statistics
filters (OSFs) for the estimation of the subband speech/non-speech
divergence.

2. SPEECH/NON-SPEECH DETECTION ALGORITHM

The algorithm is stated as follows. The input signal x(n) is de-
composed in 25-ms overlapped frames with a 10-ms window shift.
The log-energies for the m-th frame, E(m, k), in K subbands
(k = 0, 1, ..., K − 1), are computed by means of:

E(m, k) = log

(
K
L

lk+1−1∑
l=lk

Xm(l)

)

lk =
⌊

L
2K

k
⌋

k = 0, 1, ..., K − 1

(1)

where Xm(l) (l=0, 1, . . . , L-1) is the power spectrum magnitude.
The algorithm uses two order statistics filters (OSFs) for the

multi-band quantile (MBQ) SNR estimation. The implementation
of both OSFs is based on a sequence of 2N+1 log-energy val-
ues {E(m − N ,k), . . . , E(m,k), . . . , E(m + N ,k)} around the
frame to be analyzed. The r-th order statistics of this sequence,
E(r)(m,k), is defined as the r−th largest number in algebraic or-
der. For the estimation of the noise level in each subband, a median
filter is used. A second OSF estimates the subband signal energy
by means of:

Qp(m, k) = (1 − f)E(l)(m, k) + fE(l+1)(m, k) (2)

where Qp(m,k) is the p sampling quantile, l = �2pN� and f=2pN-
l. Finally, the SNR in each subband is measured by:

QSNR(m, k) = Qp(m, k) − EN (k) (3)

where the sampling quantile p= 0.9 is selected as a good estima-
tion of the subband spectral envelope. Finally, the decision rule is
formulated in terms of the average subband SNR:

SNR(m) =
1

K

K−1∑
k=0

QSNR(m, k) (4)

For the initialization of the algorithm, the first N frames are
assumed to be non-speech frames and the noise level in the k-
th band, EN (k), is estimated as the median of the set {E(0,k),
E(1,k), . . . , E(N -1,k)}.

Thus, if the SNR is greater than the threshold η, the actual
frame is classified as speech, otherwise it is classified as non-
speech. The threshold is made adaptive to the measured full-band
noise energy E in order to select the optimum working point for
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Fig. 1. Operation of the VAD on an utterance of Spanish SDC
database. (a) SNR and VAD Decision. (b) Subband SNR.

different SNR conditions. The threshold is linearly decreased with
the increasing noise level:

η = min

[
max

[
η0 − η1

E0 − E1
E + η0 − η0 − η1

1 − E1/E0
, η1

]
, η0

]
(5)

between (E0, η0) and (E1, η1) for clean and high noisy condi-
tions defined by E0 and E1, respectively. Finally, to track non-
stationary noisy environments, the noise levels are updated during
non-speech periods using a 1st order IIR filter:

EN (k) = αEN (k) + (1 − α)Q0.5(m, k)
k = 0, 1, ..., K − 1

(6)

being Q0.5(m, k) the output of the median filter and α= 0.97 was
experimentally selected.

Fig. 1 shows the operation of the proposed VAD on an utter-
ance of the Spanish SpeechDat-Car (SDC) database. In the exam-

0 2 4 6
0

0.5

1

1.5
N= 1

0 2 4 6
0

0.5

1

1.5
N= 3

0 2 4 6
0

0.5

1

1.5
N= 5

0 2 4 6
0

0.5

1

1.5
N= 8

Non−Speech
Speech

Non−Speech
Speech

Non−Speech
Speech

Non−Speech
Speech
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tributions.
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Fig. 3. Speech and non-Speech detection error as a function of the
window length.

ple, K= 2 subbands are used being clearly shown how the SNR
in the upper and lower band yields improved speech/non-speech
discrimination of fricative sounds by giving complementary infor-
mation.

3. DISTRIBUTIONS OF SPEECH AND SILENCE

In order to clarify the motivations for the algorithm proposed, the
distributions of the SNR defined by Eq. 4 as a function of the
long-term window length (N ) were studied. A hand-labelled ver-
sion of the Spanish SDC database was used in the analysis. This
database contains recordings from close-talking and distant mi-
crophones at different driving conditions: a) stopped car, motor
running, b) town traffic, low speed, rough road and c) high speed,
good road. The most unfavourable noise environment (i.e. high
speed, good road) was selected and recordings from the distant
microphone were considered. Thus, the N -order SNR was mea-
sured during speech and non-speech periods, and the histogram
and probability distributions were built. Fig. 2 shows the distribu-
tions of speech and noise for N= 1, 3, 5 and 8. It is derived from
Fig. 2 that speech and noise distributions are better separated when
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the order of the long-term window increases. This fact makes the
VAD more robust against environmental noise since misclassifica-
tion errors are reduced. The distribution of noise is highly con-
fined around the mean value exhibiting reduced variance. Thus,
the probability of detect noise as speech is reduced. On the other
hand, the distribution of speech is shifted to the right as the win-
dow length increases being also reduced the probability of detect-
ing speech as noise. This fact can be corroborated by calculating
the classification error of speech and noise for an optimal Bayes
classifier. Fig. 3 shows the classification errors as a function of
the window length N . The speech classification error is approx-
imately reduced by half from 25% to 10% when the order of the
VAD is increased from 1 to 8 frames. This is motivated by the sep-
aration of the distributions that takes place when N is increased as
shown in Fig. 2. On the other hand, the increased speech detection
robustness is only prejudiced by a moderate increase of the non-
speech speech detection error. According to Fig. 3, the optimal
value of the order of the VAD would be N= 8. As a conclusion, a
long-term measure of the SNR is beneficial for VAD since it sig-
nificantly reduces misclassification errors.

4. EXPERIMENTAL RESULTS

Several experiments were conducted for the evaluation of the pro-
posed VAD. First, misclassification errors were studied at different
SNR levels by means of the Receiver Operating Characteristics
(ROC) curves. Second, the influence of the VAD decision on a
speech recognition system was assessed. G.729 [6], AMR [7] and
AFE [8] standards, as well as VAD algorithms recently reported
by Woo [4], Li [9], Sohn [3] and Marzinzik [10] were used for
reference.

4.1. Analysis of the ROC curves

The AURORA subset of the Spanish SDC database was used in
this analysis. It was hand-labelled on the close talking micro-
phone to obtain the speech/non-speech hit rates, HR1 and HR0,
respectively. Fig. 4 shows the trade-off between speech pause hit
rate and false alarm rate (FAR0= 100-HR1) for different driving
(noisy) conditions, as the threshold varies. The optimum length
of the block was N= 8 frames and the log-energies E(m,k) were
computed using L= 256 points for the FFT. The selection of the
number of subbands is influenced by the trade-off between compu-
tational complexity and VAD performance. Using K= 4 subbands
significantly increases the effectiveness of the proposed VAD. This
fact is motivated by a shift up and to the left of the ROC curve
when the number of subbands is increased. The adaptive MBQ
VAD defined by thresholds η0= 0.85 dB for E0= 30 dB and η1=
0.7 dB for E1= 50 dB, according to Eq. 5, enables working on the
optimal point when the SNR varies from 25 to 5 dB.

The proposed VAD works with lower false alarm rate and
higher speech pause hit rate when compared to standards G.729
[6], AMR [7] and AFE [8](including the VADs used for noise es-
timation and frame-dropping) and the Sohn’s [3], Woo’s [4], Li’s
[9] and Marzinzik’s [10] algorithms. The benefits are especially
important over G.729 which is used along with a speech codec for
discontinuous transmission, and the Li’s algorithm that is based
on an optimum linear filter for edge detection. The proposed VAD
also improves Marzinzik’s VAD that tracks the power spectral en-
velopes. There is a point where the Sohn’s ROC curve starts being
up MBQ VAD in the ROC space. However, this area is far from
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Fig. 4. ROC curves for different noise conditions (results obtained
for the Spanish SpeechDat-Car database): (a) Stopped car, engine
running (12 dB). (b) High speed, good road (5 dB).

being optimum for most of the applications since HR1 is less than
95% and 75% for 12 and 5 dB SNRs, respectively, and excessive
speech frames would be lost.

4.2. Speech Recognition Performance

The influence of the VAD decision on the performance of a speech
recognizer was also studied. The reference framework is the ETSI
AURORA project for distributed speech recognition (DSR) [11]
with the recognizer based on the HTK (Hidden Markov Model
Toolkit) software package [12]. The influence of the VAD deci-
sion on the performance of different feature extraction schemes
was studied. The first approach incorporates Wiener filtering (WF)
to the base system [13] as noise suppression method. The second
feature extraction algorithm that was evaluated uses Wiener filter-
ing and non-speech frame dropping (FD).

Table 1 shows the average word accuracy (WAcc) for the AU-
RORA 2 database for clean and multi-condition training/test modes.
The proposed algorithm outperforms the VADs used for reference
being the improvements more important when the VAD is also
used for FD. The proposed VAD is the one that is closer to the
“ideal” hand-labelled speech recognition performance. The im-
provements are more important over G.729 and AMR1 when WF
and FD are applied. Table 2 shows the recognition performance av-
eraged for the Finnish, Spanish and German SDC databases for the
different training/test mismatch conditions (HM, high mismatch,
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Table 1. Recognition results for the AURORA 2 database (average WAcc for clean and multicondition training/testing).

Standard VADs Other reported VAD methods
MBQ Hand- labelling

G.729 AMR1 AMR2 AFE Woo Li Marzinzik Sohn

WF 66.19 74.97 83.37 81.57 83.64 77.43 84.02 83.89 84.01 84.69

WF+FD 70.32 74.29 82.89 83.29 81.09 82.11 85.23 83.80 85.49 86.86

Table 2. Recognition results for the SDC databases (average WAcc for the Finnish, Spanish and German databases).

Train/test
Standard VADs Other reported VAD methods

MBQ Base (No VAD)
G.729 AMR1 AMR2 AFE Sohn Woo Li Marzinzik

HM 67.93 68.59 82.58 72.53 80.52 74.95 71.80 80.52 83.98 55.08
MM 69.78 80.22 84.78 86.03 85.24 78.73 67.98 83.32 84.93 71.79
WM 88.15 93.19 94.66 94.19 94.38 91.25 71.80 93.20 94.80 92.29

Average 75.29 79.04 87.34 84.25 86.71 81.65 76.27 84.29 87.90 73.05

MM: medium mismatch and WM: well matched) when WF and
FD are performed on the Base system. The VAD outperforms all
the algorithms used for reference, yielding relevant improvements
in speech recognition for both the AURORA 2 and SDC databases.
Note that the SDC databases used in the AURORA 3 tasks have
longer non-speech periods than the AURORA 2 database and then,
more important is the effectiveness of the VAD for the speech
recognition system. This fact can be clearly shown when com-
paring the performance of the proposed VAD to Marzinzik’s VAD.
The word accuracy of both VADs is quite similar for the AURORA
2 task. However the proposed VAD yields a significant perfor-
mance improvement over Marzinzik’s VAD for the SDC databases.

5. CONCLUSIONS

This paper presented a new VAD for improving speech detection
robustness in noisy environments. The VAD is based on the es-
timation of the subband SNR using order statistics filters and per-
forms and advanced and delayed detection of beginnings and word
endings which leads to clear improvements in speech/pause dis-
crimination when the SNR drops. With this and other innova-
tions, the proposed algorithm outperformed G.729, AMR1, AMR2
and AFE standards and recently reported VAD methods in both
speech/non-speech detection performance and recognition rate when
considered as part of a complete speech recognition system.
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