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ABSTRACT

Custom arithmetic is a novel and successful technique to reduce
the computation and resource utilization of ASR systems running
on mobile devices. It represents all floating-point numbers by inte-
ger indices and substitutes a sequence of table lookups for all arith-
metic operations. The first and crucial step in custom arithmetic
design is to quantize system variables, preferably to low preci-
sion. This paper explores several techniques to quantize variables
with high entropy, including a reordering of Gaussian computation
and a normalization of Viterbi search. Furthermore, a discrimina-
tively inspired distortion measure is investigated for scalar quanti-
zation to better maintain recognition accuracy. Experiments on an
isolated word recognition show that each system variable can be
scalar quantized to less than 8 bits using a standard quantization
method, except for the alpha probability in Viterbi search which
requires 10 bits. However, using our normalization and discrimi-
native distortion measure, the forward probability can be quantized
to 9 bits, thereby halving the corresponding lookup table size. This
greatly reduces the memory bandwidth and enables the implemen-
tation of custom arithmetic on ASR systems.

1. INTRODUCTION TO CUSTOM ARITHMETIC

Automatic speech recognition (ASR) has unquestionable utility
when used in environments without a keyboard. Ideally, one could
implement a fully-functioning ASR on as portable a device as a
watch, necklace, or pendant. On such devices, however, it is criti-
cal to reduce computation and resource utilization. In [1] we intro-
duced and proposed a number of software techniques to this end.
One of the most popular one used in practice is the discrete HMM
or the discrete mixture HMM [2, 3], where the observation vectors
or sub-vectors thereof are quantized and their state likelihoods are
obtained efficiently via lookup tables (LUT). The use of LUTs also
provides a compact representation of model parameters, which not
only saves memory but also reduces run time [4, 5].

Motivated by the low entropy of the internal variables within
an ASR system and the efficiency of hardware-based table lookups,
we in [6] propose a novel framework of custom arithmetic for
high-speed, low-resource ASR systems. Therein, each variable
(speech features, model parameters, and all intermediate variables
computed within the system) is quantized and a codebook is gener-
ated. We then pre-compute each arithmetic operation on its inputs’
codewords and quantize the computational result using its output’s
codebook. In this way, the entire computation is performed using
simple and fast ROM lookups. Distinct from [6] which presents
a general design methodology for the above framework, this pa-
per focuses on codebook design for internal ASR system variables
using custom arithmetic units.
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Codebook design is the first and the key step enabling cus-
tom arithmetic. Since the size of a LUT depends on the bit-widths
of its inputs and output, the variables are preferably quantized to
as low precision as possible. This poses potential challenges, as
some variables with relatively high entropy might require huge
codebooks, leading to prohibitive table sizes. In the Mahalanobis
distance calculation of Gaussian evaluation, for example, the dis-
tance is accumulated along the dimension of the features, resulting
in a relatively spread-out distribution covering all partial accumu-
lations. In addition, the forward probability in Viterbi search pos-
sesses a more fatal problem – the forward pass computes over an
arbitrarily long utterance in real applications, making α’s distribu-
tion unknown to the quantizer at the codebook design stage. A key
contribution of this work is to use reordering and rescaling tech-
niques to reduce the entropy of such variables without adversely
affecting speech recognition word error rate (WER). Thirdly, with
scalar quantization, the distortion measure should ideally be con-
sistent with WER minimization. We propose a discriminatively
inspired distortion measure to achieve better compression. As will
be seen, these techniques greatly reduce the memory bandwidth
and the computational load of our ASR engine.

The rest of the paper is organized as follows: Section 2 dis-
cusses two structures for Mahalanobis distance computation. Sec-
tion 3 presents our Viterbi normalization procedure. Section 4 for-
mulates the discriminative distortion measure. Finally, Section 5
presents experimental results with Section 6 concluding.

2. REORDERING OF LIKELIHOOD COMPUTATION

Log-arithmetic is widely used in practical ASR systems to achieve
numerical values with a very wide dynamic range 1. To this end,
the log state-conditioned likelihood b̄j(t) of the tth observation
vector (x1(t), x2(t), ..., xD(t)) can be expressed as

b̄j(t) =
⊕

i∈Mj

[
w̄i + ci − 1

2

D∑
k=1

(xk(t) − µik)2

σ2
ik

]
. (1)

Mj is the subset of Gaussian components of state j. The variables
µik and σik are the scalar mean and variance a Gaussian. w̄i is the
log responsibility of the ith component, and ci is a constant.

Two iterative operations are required by Equation (1): one is

ei(t)
∆
=

∑D
k=1 dik(t), where dik(t)

∆
= (xk(t) − µik)2/σ2

ik, and
the other is b̄j(t) associated with the log addition. There are two
natural strategies for performing quantized accumulation: a linear
accumulation and a binary tree.

In linear accumulation, the next value equals the current value
combined with an additional input as depicted on the left in Fig-
ure 1. In the case of ei(t), the variable ei(t) is initialized as zero

1In this paper, variables with bars are log numbers. E.g., x̄ = log x.
Also, ⊕ denotes log addition where x̄ ⊕ ȳ = log(ex̄ + eȳ).
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Fig. 1. Linear vs. tree-structure accumulation. Squares refer to operands;
circles refer to arithmetic operators to be implemented by table lookup.

and ei(t) = ei(t) + dik(t) is iteratively performed for k = 1..D.
An alternative to linear accumulation is to use a binary tree, as
depicted on the right in Figure 1.

There are different ways of implementing these two schemes
with LUTs. First, a separate table could be used for each circle,
with the advantage that each table would be customized to its par-
ticular distribution of input and output values. This would lead to
small tables, but D − 1 tables are needed in both linear and tree
cases. At the other extreme, a single table could account for all
circles, but its size might be very large since its input and output
distributions would have much higher entropy. Between these two
extremes, a separate table could be used for each tree level, leading
to �log D� tables. The potential advantage here is that each tree
level can expect to see operand distributions with smaller entropy,
and the amount of overall table size might be minimized.

This paper compares three strategies in computing ei(t). First,
we implement the linear case using only one overall shared LUT.
Second, we try two different tree accumulation patterns, both with
�log D� LUTs as mentioned above. The two tree strategies differ
only at the top level, where the first case adds adjacent elements
of the vector {dik(t)}D

k=1, and the second case instead combines
the dik(t) of each feature with its corresponding delta. The sec-
ond idea is based on the empirical observation that the dynamic
range of dik(t) is similar between the static features after mean
subtraction and variance normalization, and similar also between
the deltas. This will cause the outputs of the top level to be more
homogeneous, leading to better quantization and representation.
When dealing with an incomplete tree (D is not a power of 2),
some values are allowed to pass over levels and are added to lower
levels of the tree, as shown in Figure 1.

3. NORMALIZATION OF VITERBI SEARCH

In Viterbi search, the forward probability αj(t) = P (O1:t, qt=j)
is calculated for each frame t = 1..T as follows,

ᾱj(t) = [max
i

(ᾱi(t − 1) + āij)] + b̄j(t). (2)

Here we let state 1 and N denote the beginning and ending non-
emitting states respectively. The final Viterbi score is evaluated as
log P (O1:T ) = max

j
[ᾱj(T ) + ājN ].

As can be seen in Equation (2), the ᾱ value does not have
a bounded dynamic range. Specifically, as T increases the Viterbi
score will decrease, something that causes severe problems in code-
book design. First, since the utterance length in real applications is
unknown at the stage of system design, the ᾱ values at decode time
might not lie in the dynamic range of those values used for quan-
tization at codebook design time. Essentially, it is known that the
distribution over ᾱ has high entropy since it decreases unbound-
edly with T . While we could assume some upper bound on T and
quantize with the ᾱ distributed accordingly, this would yield an ex-
ponentially larger and wasteful codebook where many values are
rarely used by short utterances. Therefore, it is highly desirable to

have a normalized version of the forward probability, where infer-
ence is still valid but the dynamic range is restricted regardless of
the utterance length.

Often α′
j(t)

∆
= P (qt = j|O1:t) serves as a normalized for-

ward probability to solve the underflow problem that occurs in
fixed-precision floating-point representation [7, 8] with the recur-
sion,

α′
j(t) =

1

s(t)

∑
i

[α′
i(t − 1)aij ]bj(t) (3)

producing α′ with a representable numerical range, where

s(t)
∆
=

P (O1:t)

P (O1:t−1)
=

∑
j

[
∑

i

[α′
i(t − 1)aij ]bj(t)], (4)

However, α′
j(T ) alone can not serve as the final likelihood score,

since the scaling factor s(t) at each frame is different for different
words. Obtaining a valid score, according to Equation (4), requires
the log values of s(t), t = 1..T , to be stored during the forward
pass and be summed up at the end, which again brings up the is-
sue of an ever growing dynamic range. One widely used approach
to circumvent this problem is to sum up s(t) values of different
words and to use this sum as the new scaling factor for that frame.
Since at a frame the recursions of different words are normalized
by the same scaling factor, the final likelihood score is naturally
obtained from the last forward probability. There are potential dif-
ficulties, however, with implementing this recursion using custom
arithmetic – computing the sum of s(t) values involves significant
additional operations with a complexity as much as Viterbi decod-
ing itself.

Therefore, this paper seeks an alternative normalization method.
We show that the dynamic range of ᾱj(t) is bounded by linear
functions of time. Equation (2) implies that

max
j

ᾱj(t) − max
i

ᾱi(t − 1) ≤ max
ij

āij + max
j

b̄j(t)

min
j

ᾱj(t) − min
i

ᾱi(t − 1) ≥ min
ij

āij + min
j

b̄j(t)
(5)

Assuming max
j

b̄j(t) and min
j

b̄j(t) are mean ergodic processes,

we can obtain the lower and upper bounds of ᾱj(t) as 2

rlt ≤ ᾱj(t) ≤ rht (6)

where
rh

∆
= max

ij
āij + E[max

j
b̄j(t)];

rl
∆
= min

ij
āij + E[min

j
b̄j(t)].

Motivated by (6), we propose a normalized forward proba-

bility ηj(t)
∆
= αj(t)e

rt, where r is a positive constant. The fi-
nal likelihood score consequently becomes max

j
[η̄j(T ) + ājN ] =

log P (O1:T ) + rT . First, this final score is valid simply because
the offset rT stays the same for all word candidates and hence has
no impact on the decoding decision. Second, dynamic program-
ming still applies to the inference with the same computational
complexity:

η̄j(t) = max
i

[η̄i(t − 1) + āij ] + b̄j(t) + r. (7)

2The lower and upper bounds were derived by writing the two in-
equalities in (5) for all frames and summing them up respectively.
The following ergodic processes assumption was used in the derivation,
1
T

∑

t

max b̄j(t) = E[max b̄j(t)], and similarly for the min case.
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Finally, the dynamic range of the normalized log forward proba-
bility η̄j(t) is controlled by r, since by Equation (6) we have

(rl + r)t ≤ η̄j(t) ≤ (rh + r)t. (8)

To choose r, we compute the scores of all utterances from the
training set evaluated on their own generative word models. And
we let r = − E [log P (O1:T |correct model)/T ], in an attempt to
normalize to zero the highest (or at least the correct-model’s) log
likelihood score of an utterance. It still might be true that when
evaluating utterances with respect to a wrong word model the score
decreases as T increases. When this happens, however, it will be
for those words with lower partial likelihoods. The scheme, there-
fore, is analogous to pruning, where we essentially prune away un-
promising partial hypotheses by collapsing their likelihoods down
to be encoded with a very few number of bits.

4. DISCRIMINATIVE DISTORTION MEASURE

Lacking an analytically well-defined distortion measure to maxi-
mize recognition rate, conventional discrete HMM ASR systems
often use Euclidean or Mahalanobis distance for vector quantiza-
tion [7]. However, it is important to investigate new metrics cus-
tomized to minimize the degradation in recognition accuracy.

As will be shown in Section 5, the forward probability requires
the highest bit-width among all system variables and hence has the
greatest impact on the memory bandwidth and the total table size.
We are therefore particularly interested in further compressing this
variable. Forward probabilities are in fact just likelihoods. It turns
out that different likelihood magnitudes can be either more or less
important for generating the ultimate correct answer. The correct
answer will typically have a high likelihood, whereas very wrong
answers will typically have low likelihoods and are likely to be
pruned away regardless of their relative value. A standard data-
driven quantization scheme, however, tends to allocate more bits
to a value range only based on its higher probability mass. Since
low likelihoods are the more probable (there is only one correct
answer), more bits will be allocated to these low scores at quanti-
zation time (thereby giving them high resolution). Such a quanti-
zation scheme, therefore, can be quite wasteful.

Therefore, we propose to use a discriminatively inspired dis-
tortion measure to penalize low-valued forward probabilities. The
distortion between a sample η̄j(t) = x and its quantized value
Q(x) is defined as

D(x, Q(x)) =
(x − Q(x))2

f(x)
, (9)

where f(x) is strictly positive. In choosing f(x), it is desired that
as x increases, the “distance” between x and Q(x) will increase,
which will cause more bits to be allocated for higher likelihood
scores. f(x) = s − x is such a function, where s > max x con-
trols the degree of discrimination with smaller s implying higher
discrimination. In this work, s was determined empirically on
training data.

5. EXPERIMENTS AND RESULTS

5.1. Experimental setup

The quantization experiments were evaluated on NYNEX Phone-
Book [9], an isolated word database recorded through telephone
channels. The acoustic features are the standard MFCCs plus the
log energy and their deltas. Mean subtraction and variance normal-
ization are applied to all features in an attempt to make the system

robust to noise and to decrease codebook sizes. The phone-based
CHMMs are concatenated together into word-based models ac-
cording to their pronunciation models, which enables the users to
define their own vocabulary by composing a word from phonemes.
Our system has 42 phoneme models, each with 4 emitting states
except for the silence model. The state probability distribution is
a mixture of 12 diagonal Gaussians. The testing set consists of 8
subsets, each with a different vocabulary of 75 words. The final
WER is an average over them, where the baseline WER is 2.07%.

x xk(t) s (xk(t) − µi,k)2

– – – – d dik(t)
m µik e ei(t)
v σ2

ik p ci − 1
2
ei(t)

c ci q w̄i − ci − 1
2
ei(t)

w w̄i b b̄j(t)
a āij η η̄j(t); η̄j(t) + āij

Table 1. System variables in the ASR back-end, followed by their corre-
sponding expressions in Equations (1) and (2)

Based on the analysis in the previous sections, we defined 13
variables to be quantized which are listed in Table 1. The variable
x is the output feature scalar of the front-end, m,v, c,w and a are
the acoustic model parameters, and s,d, e,p,q,b and η are other
intermediate variables in the back-end system. There are 8 func-
tions and hence 8 potential LUTs associated with these variables:

s = (x − m)2 q = w + p
d = s/v b = b ⊕ q
e = e + d η = η + a
p = c − e/2 η = η + b − r

Note that the max operations in Equation (7) can be implemented
easily with integer comparisons, so no extra LUTs are required.

5.2. Quantization experiments and results

We quantized each variable individually with an increasing bit-
width, leaving all other variables at full precision. The algorithm
used for scalar quantization is LBG [10].

Table 2 shows the minimum bit-width to which a variable can
be quantized without any increase in WER. Here we report all the
system variables except for the accumulated Mahalanobis distance
e and the forward probability η which will be discussed separately
later. We let q and b share the same codebook because their value
ranges have much overlap. As shown in the table, all the variables
can be individually compressed no higher than 6 bits. It suggests
that the floating-point representation of the variables of an ASR
system is far from compact. It is also interesting to see that all the
model parameters m, v, c, w and a can each be quantized to no
more than 5 bits. Low-precision representation of these parameters
substantially reduces the offline storage as well as online computa-
tion. In addition, the feature scalar x and the state likelihood b can
each be quantized to 5 bits, which implies an additional substantial
memory savings.

variable m v w a x s d c p b (q)
min bit 4 5 2 2 5 6 5 5 6 5

Table 2. Minimum bit-width to which each variable can be quantized
without increase in WER

We proposed two approaches in Section 2 to quantize variable
e. In our case, the operation e = e + d is repeated 26 times to get
the final value of e. Using linear accumulation, it involves only
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Fig. 2. Single-variable quantization for accumulative variable e

two variables e and d and only one table e = e + d. Alternately,
it can have multiple variables and �log 26� = 5 different tables
generated by the tree-structure accumulation each with a relatively
small size. For simplicity, we quantized the variables in each level
of the tree structure with the same bit-width. Figure 2 summarizes
the results in terms of WER vs. bit-width of each codebook. Tree-
structure I denotes the method where adjacent pairs are added at all
levels to form the next-level codebook, whereas in tree-structure II,
MFCCs are added to their corresponding deltas at the first level. It
can be seen that in order to get baseline recognition rate, linear ac-
cumulation needs 7 bits and tree-structure schemes need 6 bits for
each of its codebooks. The total table size, however, is a different
story. To compare the total table size, we only consider the two
functions in which e is involved.3 Assuming nd = 5, nc = 5 and
np = 6 according to table 1, we need 6 kBytes of lookup tables
to realize the operations involving e using linear accumulation,
whereas the required space goes up to almost 10 kBytes for the
tree-structure schemes to achieve the same goal. It is worth noting
that the feature dimension is fixed at 26 and is relatively low, and
the addition operation only changes the dynamic range at a linear
scale. This only yields a mild increase in the entropy of e, thereby
making the linear accumulation an effective approach.

As stated in Section 3, we applied our normalization to the α
probability to reduce its entropy. To show the advantage of the nor-
malization on quantization, we extracted samples of the forward
probabilities with and without normalization on the same subset
of training data, and generated codebooks based on the Euclidean
distance distortion measure for each case. We additionally applied
quantization to the normalized Viterbi search using our discrimi-
native distortion measure. As shown in Figure 3, the normalized
forward probability obviously outperforms its unnormalized coun-
terpart by saving 1 bit while keeping the baseline recognition rate
(thus halving the total table size). In fact, we believe the benefits
of normalization would be more conspicuous on a task with longer
utterances, such as connected-digit or continuous speech recog-
nition. In addition, the discriminative distortion measure works
slightly better than that the normal one.

We therefore chose the linear accumulation in quantizing e
and used our normalization and discriminative distortion measure
in quantizing the forward probability. Together with other variable
quantization results, we generated codebooks with different bit-
width for all system variables, to which an optimization search can
be applied to find the best bit-width allocation scheme. Using this
fully quantized system, we in [6] introduce a procedure for overall
system design and achieve a complete ASR system back-end using

3If e, d, c and p are quantized to ne, nd, nc and np bits respectively,
the total size of related tables is ne2nd+ne + np2nc+ne bits.
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Fig. 3. Single-variable quantization for forward probability

only 59 kBytes of ROM tables with only a slight degradation in
recognition accuracy. This system using custom arithmetic units
has a clock-cycle speedup of 2 to 3 over a system using floating-
point arithmetic.

6. CONCLUSION AND FUTURE WORK

In this work, we presented several computation reordering and
rescaling techniques on codebook design for an ASR system us-
ing custom arithmetic units. They enable a fully quantized system
to process utterances with arbitrary length. We also gave a discrim-
inative distortion measure to further compress the forward proba-
bility. The quantization would be further improved if a distortion
measure entirely driven by recognition rate could be defined.

We would like to thank Chris Bartels and Gang Ji for proof-
reading and Carl Ebeling for much helpful advice.
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