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ABSTRACT

One of the difficulties in using polynomial segment model (PSM)
to capture the temporal correlations within a phonetic segment is
the lack of an efficient training algorithm comparable with the
Baum-Welch algorithm in HMM. In our previous paper, we in-
troduced a recursive likelihood computation algorithm for PSM
recognition and can perform Viterbi-style training. In this pa-
per, we extend the recurrsive likelihood computation into a fast
forward-backward PSM training algorithm that maximizes PSM
likelihood. In addition, we introduce an improved PSM, dynamic
multi-region PSM, that allows a data-driven alignment between
observations and the segment trajectory. The dynamic multi-region
PSM model outperforms HMM and traditional PSM in both phone
classification and phone recognition tasks on the TIMIT corpus.

1. INTRODUCTION

One advantage of HMM is that both model training and recog-
nition can be efficiently performed using dynamic programming
based algorithms such as the Baum Welch and Viterbi algorithms.
While the polynomial segment model (PSM) [1], in which HMM
is a special case, that relaxes the conditional independence as-
sumption of the HMM is of interest to different researchers [3],[6],
its computational complexity limits its applications.

Computation complexity for PSM is much higher because of
two reasons: 1) PSM models are defined in terms of segments.
So, an additional search over all possible segment boundaries is
needed. 2) Observation likelihoods within a segment are evalu-
ated jointly because of their dependence on the segment boundary
and duration. Because of this, extending a segment to include an
extra observation requires the re-computation of all the observa-
tion likelihoods within the segment. This re-computation makes
recognition and training computationally intensive.

In our previous paper [11], we proposed a fast likelihood com-
putation algorithm that significantly improved the PSM-based recog-
nition efficiency. The efficient likelihood computation can also be
applied to model training. One major difference between recog-
nition and training algorithms is the computation of the state pos-
terior probability in the expectation step of the training which re-
quires the consideration of all possible segment sequences. In this
paper, we introduce an efficient way of computing the forward and
backward probabilities, typically denoted as «(j), 8:(7), which
makes use of the fast likelihood computation.

When one compares the HMM and the PSM with multiple
variances [2] which can be considered to have multiple “states”
with a time varying mean but a constant covariance within the
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state , one difference is the assignment of the observations to the
“states”. In HMM, observations are aligned to maximize the like-
lihood while in PSM with multiple covariances, they are uniformly
assigned. In this paper, we propose an improved model that allows
the assignment during recognition to be likelihood driven. We call
it the dynamic multi-region PSM.

In the next section, we briefly review the PSM formulation
including the maximum likelihood parameter re-estimation equa-
tions using the EM algorithm. In Section 3, we discuss the applica-
tion of the fast likelihood evaluation to computate the forward and
backward probabilities. In Section 4, we describe the proposed
model improvements and the related training and recognition im-
plementations. Experimental results are reported in Section 5 and
we conclude the paper in Section 6.

2. BASIC FORMATIONS OF POLYNOMIAL SEGMENT
MODEL

Polynomial Segment Model, first proposed in [1], is defined as,
C=ZnvB+E,

where C'is a N x D matrix for N frames of D dimensional feature
vector. B is a (R + 1) x D parameter matrix of a R** order
trajectory model and E is the residual error that is the same size as
the feature matrix C. Zy is an N x (R + 1) time normalization
matrix, also called a design matrix, that maps segments of different
durations within a range of between 0 and 1.

2.1. Parameter Estimation of a Single PSM
As described in [1], the maximum likelihood estimate of the trajec-
tory parameter matrix By, of a speech segment Cj, with Ny, frames
is given by,
7 - 1 ’
By = [ZNk ZNk] Zy, Cr,

and the corresponding residue error covariance is given by,

= E,Ey _ (Ci=Zn,Bi)'(Ck—Zn, Br)
k Ni Ni )
The triplet { By, X, Nk } are viewed as the sufficient statistics for
the segment Cy. Given a set of K segments S = {C1,...,Ck}
of model m, the maximum likelihood estimate of the PSM param-

eter matrix By, and residue covariance Y, are given by
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2.2. Log Likelihood Evaluation

The likelihood of segment C; against model m can either be evalu-
ated using its sufficient statistics, { Bj, X;, IN; } or be computed by
accumulating the observation likelihoods one at a time, against the
corresponding sampling point on the Polynomial Segment Model.
This log likelihood, L(C

i|m), can also be written as
Nj -
L(Cj|m) = —=-[Dlog(2m) +log |[Zm|]

_%tr[(cj' = Zn, Ba) S (C) = Zn, Ba)]. (1)

2.3. Maximum Likelihood Training of PSM Parameters

The basic idea of using the EM algorithm for training PSM is to
find a set of model parameters so that the expected log likelihood
is maximized over all possible segment alignments.

The log-likelihood formula given in Equation 1 can be ex-
tended from single segment to a sequence of segments. The sequ-
ment notation is changed from Cy to O, which represents the seg-
ment that end at time ¢ with duration d, because segment bound-
aries are no longer pre-defined as in the previous sections. An ob-
servation sequence OF. = [01, 02 . .. or] containing N segments,
STV, each segment s,, is defined by its label g, and the begin and
end times 7y, T, i.€. S = (qn, Tn, Tn). Also denote s(t) as the
segment index at time ¢ that

s(t)y=n

thus s(1) = 1 and s(7") = N.
The log-likelihood of the observation and the segment against
model ), log P(OF, S7'|)\), is given by

ianStS'}A—n

log P(O7, 57 |A) = log(tg,) + 3202 108 (g, 4,10 )+ ()

Z IOg(P(Om Tn+1|(In))

Here, it is assumed that the transition probability a;; only depends
on the segment labels. The expected log likelihood is expressed as
the auxiliary function, Q-function,

QLX) = > P(SY07, A)log P(O7, S |N).

N,SV

As described in [3], the solution can be computed by a general-
ized forward-backward algorithm. Define ;,4(m) as the poste-
rior probability of segment s(¢) ends at time t with duration d and
qs(t) = M. That is,

Ye,a(m) = p(gsey = m, Tspy = t —d + 1, 741y = t|O7.).

Similar to posterior probability in HMM, + 4(m) can be decom-
posed into the forward probability a4 (m), the probability that all
the observations up to time ¢ with the last segment ending at time
t with duration d comes from model m, and the backward proba-
bility B q4(m), the probability that all the observations from ¢ + 1
to T given that the last segment that ends at ¢ comes from model
m and is of duration d. Thus, in the E-step,

N t—d
aga(m) = P(O4lm) > > aimai—au( (©)
i=1 =1
N T—(t+1)
Bralm) = D am; > POMNN)BG), @
j=1 =1
e.a(m) ag.a(m)By.a(m) 5)

p(OT)

In the M-step, the solution for By, and 3, are given by,

T t
2 SN va(m) ZaZa

tro ¢
B — [z S e a(m) 2404
t=1d=1 t=1d=1
& _ e Xy Wi(m)(0f = ZaBm) (04 = ZaBm)
Yo Ximgd X yea(m)

It is worth noting that for HMM, R = 1 and d = 1. Thus, Z4
becomes an /N x 1 matrix of all 1’s and the above equations become
the HMM re-estimation equations.

3. EFFICIENT FORWARD-BACKWARD TRAINING
ALGORITHM FOR PSM

3.1. Incremental Likelihood Evaluation

In our previous paper [11], we introduced a way to recursively
compute the segment likelihood L(OY|m) for segment O} against
model m. The key idea is that by re-grouping the terms in the ob-
servation likelihood separately by different powers of (di—l) into

0i,m’s. The factors (ﬁ)i come from the denominator of the el-

ements of the i** column of design matrix Z and are the same for
all elements in a column. d — 1 is used to characterize the dura-
tion of a design matrix. Each 6; ,,, can be recursively estimated so
that the log likelihood of adding one observation can be updated
efficiently. That is,

2R
L(Oglm) = 6i.m(Oq). (7)
=0
0:,m (0441) = 00.m (05)(452) + Bim (0041),

where 041 is the £ + 1 observation. For a R order polynomial
model, there are (2R + 1) terms in . For a quadratic polynomial,
the d;.» can be written in vector form as:

90,m (0t41) (K + (041 — B1)5m (0041 — B1)")
; —2(0t+1 — B1) ' B’
= =5 | —2(0e+1 = B1)Em' B3 + B2Zm' B2 |
2825, By’
54,m (Ot+1) /332;n1ﬂ3’
where K = Dlog(2m) + log|%,,| is a constant term for each

observation and (; is the it row of parameter matrix B,,. Then,

( t+1

ar1lm) = L(Odlm) + Am (07).

1)’c
Zekm Od +5k,m(0t+1),

In the real implementation, A does not need to be explicitly com-
puted. Instead, by storing 6; ,,,’s and updating them, the log likeli-
hood can be computed via Equation 7. Also, notice that the d;,,,’s
are independent of d. So, they can be re-used when computing the
likelihood of appending the same observation to a segment with a
different starting point. This is often the case in EM based training
in which different segment starting points have to be considered.

While additional time is required to “transform” 6; ,,,’s from
(d) to (d + 1), this is much more efficient compared with re-
computing the log-likelihood of the whole segment.

A similar incremental likelihood can be derived to move the
segment begin by one frame while fixing the segment end. This
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is useful for computing the backward probability. One simple ap-
proach is to reverse the polynomial. We use the symbol “to denote
the reversed parameters. Assuming that ¢ is between zero and one,
the reversed model is obtained by substituting ¢ = 1 — ¢ in the
original polynomial.

3.2. Fast Evaluation for Training

EM training can be evaluated by implementing Equations 3-5. Equa-
tion 3 shows that the computation of ay 4(j) involves two terms, i)
evaluating the segment likelihoods, ii) summing over different a’s
that depend on both the current segment boundary and the previ-
ous segment boundaries, current state j and previous state ¢. How
to make the training more efficient? Similar to Equation 7, the log
a’s for d > 1 can be written as,

log at,a ()
= L(O4]) +1og (2, 11 aije-aa(i))

N t—d
:A](Oﬁi:ll)_{—l’(o |.7 +10g (ZZ Qi O — dl )

~ v

~
ar_1,a—10)

= Aj(0;Z7) +log(u—1,a-1(7)),

where A; (0!~ is defined in Equation 8. For d = 1, a new seg-
ment is formed and the recursion is not needed. Therefore,

log a1 (5) = ploe]g) +log(3i, 3011 aijere—1,(i))

Similarly, 8;’s can be reformulated using the incremental reversed
log likelihood. Denote

Quy1.1(j) = P(OFT319)Beri(5),

being the probability of the future observation and that the seg-
ments begin at time ¢ + 1.

Br.a(i) = Z =1 Qij E

For d > 1, 2’s can be rewritten as

. Aj(0r) +1og Qu—1,1-1(j)
log Q = ST T
0g $2.1(7) { p(ot]§) + log Bi—1,1(4)

where A j (0¢) denotes the reversed incremental likelihood.

During the M-step, the normalized observations, such as
0!’ 0} and O}, Z; are required. Terms that are independent of the
observations, such as Z;Z,, can be precomputed. For normalized
observation terms, incremental computation techniques can also
be used to make the accumulation more efficient.

As in to HMM, pruning can speed up parameter estimation and
recognition. Two types of pruning are implemented, i) fixed beam
and ii) fixed number of hypothesis. While aggressive pruning may
introduce search error, a conservative pruning that removes highly
unlikely paths can still provide good computation savings. In our
implementation, both types of pruning are implemented for PSM
training and search.

LY Qup10).

d>1
d=1

4. DYNAMIC MULTI-REGION PSM

While PSM generalizes the HMM model by capturning the corre-
lations between speech frames, it also imposes more constraints.
Consider the case of a multi-region PSM as introduced in [2]. The
parts corresponding to the different covariances within a segment

Zy,v(dy) =

can be considered as different PSM states. In HMM, data align-
ment between states and observations are determined using like-
lihood. In PSM, observations within a segment are aligned to
states/regions uniformly. This lack of dynamic “within segment
warping” limits the power of the model with multiple covariances
within each segment.

To overcome this constraint, [12] suggested using HMM state
alignment to assign speech frames to different PSM regions. The
design matrix is then adjusted to estimate a new model with non-
uniform warping. While this allows a more flexible alignment, the
within segment warping information is only used in model training
and can only be performed in conjunction with an HMM model.
Furthermore, the HMM alignments may not be suitable for PSM.
In this section, we propose a general approach of dynamic warping
within PSM segments called dynamic multi-region PSM (DPSM)
that allows ML alignment between observation and the regions,
and show that using incremental likelihood, DPSM training and
recognition is possible.

Assuming that there are u regions, the PSM segment Cj, (us-
ing the notation of Section 2.1) is expressed in the following form.

Cr 1 Zu,1(Nk,1)B Er,1
R IR |
Chon Zuu(Niu) B Ep
where C,y, Ek, and Ny, denotes the feature vector, residues
and duration of the v*" region. The new design matrix is composed
of u sub-matrices Zy,,(dy). Instead of normalizing the speech to
between 0 and 1, Z,, , (d, ) normalizes the frames to between *=1
to . For example, a three-region segment has Z3 1 that normal-

izes the frames to a region between 0 and %,Zg,,g that normalizes
the frames to a region between % and %, etc. Thus,

Cp =

v—1 -
(( = )+ (dugl)u)R 1

(v=1)
L (U + @)
1 (L=b R-1

1 ((Vgl)

+ @) + @ oe)

(3 ("

The above is a general formulation of dynamic multi-region
PSM without any assumption on how each region relates to an-
other. Possible variations include complete independent regions in
which both means and variances are separately estimated, variable
variance in which a single trajectory mean is used with different
variances, and a single trajectory case in which both the mean and
variance are the same across all regions. Irrespective of the varia-
tion used, training and recognition of DPSM is very similar to that
in traditional PSM case when using the incremental approach.

For recognition, one can consider the regions as the new acous-
tic units, and the same recognition procedure can be followed. The
only subtle difference is that the units now have design matrices
mapped to different ranges instead of always between 0 and 1.
However, the formulation and algorithm for recognition remain
the same.

During the E-step in training, the change is minimal. One can
again treat the regions as different acoustic units and collect the
7’s separately, except that a new indexing of v is needed. So, the
posterior probability of model m, region v with region duration d,
is denoted as ~y¢,q, (M, v).

During the M-step, the update of the model depends on the
variation. If the regions are completely independent, the only dif-
ference between using multiple regions, and multiple whole seg-
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ments, is the range of normalization in the design matrices. If only
a single mean is used, all the regions contribute to the re-estimation
of the segment mean. It can be shown that the new mean for model
m with v regions is given by,

Bm B [ZZ Z :Yt'dv (m7 v)ZU,U(dv),Zu,v(dv)]

vl t=1dy—1

v T t
[zz 3 S (m v>zu,v<dv>'o;v] C®
v=1 t=1 dp=1

This is quite similar to Equation 6 except that observations are
normalized with different sub-design matrices.
The new variances of different regions are given by

Em,'u =

i
S Xk o1 Ve, (M) (04 = Zu,0(d)Bm) (O} —Zu,v(d)Bm)

23;1 thv=1 dvt,d, (M5V)

If a single variance is used across all regions, X, is either
obtained by summing over all the regions or merging the region
variances. That is

- > o=1ZmuX [Z?:1 Z(tivzl do7t,dy (m,v)]
= + —
" v=1 2ap=1 Z§U=1 vt d, (M)

5. EXPERIMENTS

Two sets of experiments, TIMIT classification and recognition were
performed to demonstrate the performance of efficient forward-
backward training and the dynamic multi-region PSM.

All experiments were performed using Mel-frequency cepstral
coefficients (MFCC) with delta and accelerated coefficients at a
rate of 200 frames per second, and SX and SI utterances in the
standard TIMIT train and test set [9] were used. The phone set
was similar to [10] with minor modifications ( el => ax + 1,
en => ax + n). No language model was used and the insertion
penalty was tuned empirically. In all the PSM experiments 2"¢
order PSM was used, and the HMM baseline was obtained using
three-state left-to-right HMM models which were trained using the
EM-algorithm. Only one single Gaussian mixture was used for
both PSM and HMM.

Classification was performed using different types of PSM
variations to show the effectiveness of the improved models. Re-
sults are summarized in Table 5 using the single mixture mono-
phone HMM, which was trained using EM algorithm, as the base-
line. The TIMIT phone alignment and Viterbi algorithm were used
for training the DPSM. The traditional PSM with uniform align-
ment and single variance is not as good as that of the HMM; allow-
ing multiple covariances does not give a significant gain. However,
allowing within segment warping gives a significant improvement
with and without multiple covariances. The performance of DPSM
with three covariances, which have the same number of parame-
ters as HMM, matches that of HMM. While using 3 independent
regions, DPSM performs slightly better that HMM.

In all the PSM recognition experiments used DPSM with a sin-
gle mean and three covariance. The PSM performance is slightly
better than that of HMM even though both have the same number
of parameters. In addition, we compared the performance of dif-
ferent training method, Viterbi training and EM training with dif-
ferent number of active hypotheses in pruning. The results show
that EM training gives better performance and for this task, more
hypotheses in pruning are not needed.

Accuracy%
HMM 61.63
Tradition PSM 57.62
PSM with 3 regions, 3 Cov. 57.67
DPSM with 3 regions, 1 Cov. 60.08
DPSM with 3 regions, 3 Cov. 61.83
DPSM with 3 Indenpendent regions 62.83

Table 1. Classification result using different types of PSM

HMM | DPSM DPSM DPSM
Vit. (EM 15 hyp.) | (EM 30 hyp)
Accuracy% | 45.43 46.29 46.59 46.59 |

Table 2. Recognition result using different training methods

6. CONCLUSION

In this paper, an efficient forward-backward training approach for
Polynomial Segment Model, which allows PSM models to be trained
via maximum likelihood was proposed. We also introduced dy-
namic multi-region PSM so that the models can capture the dy-
namic expansion and compression of the phone units. We showed
that with this dynamic multi-region PSM and EM training, classi-
fication and recognition performance of DPSM is better than that
of the tradition PSM or HMM.

Via a presentation of the efficient forward-backward training
and evaluation algorithm formulations, we demostrated that the
framework for both HMM and PSM are very similar. In fact, a
three-state HMM can be viewed as a DPSM of 0°" order and three
independent regions. This will help to further explore the possibil-
ity of merging both models. Also, the application of techniques,
that are well developed in HMM, to PSM is feasible under this
framework.
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