
SEQUENTIAL CLUSTERING ALGORITHM FOR GAUSSIAN MIXTURE INITIALIZATION

Ronaldo MESSINA and Denis JOUVET

France Télécom R&D – DIH/IPS
2, Av. Pierre Marzin

Lannion 22307, France

ABSTRACT

A simple sequential algorithm for deriving initial values for Gaus-
sian mixture parameters used in HMM-based speech recognition is
presented. The proposed algorithm sequentially clusters the train-
ing frames, in the order in which they are available and according
to the density to which they are associated. This frame-density as-
sociation results from a frame-state alignment of the training data
performed with a single-Gaussian model, which is good enough
for such a force-alignment task. The models obtained with the pro-
posed sequential clustering procedure provide good speech recog-
nition performance when compared to models obtained with the
usual Gaussian splitting procedure.

1. INTRODUCTION

Mixture of Gaussians (MG) are used in Hidden Markov Models
(HMM) as an approximation to the state-dependent observation
densities. The use of MG provides fine acoustic resolution that is
necessary for high recognition performance, but there is no known
solution to decide how many elements a mixture should have. The
number of elements also depends on the kind of data that is mod-
eled: landline/wireless telephone speech can be very different from
each other, female/male vowel-like sounds, mixed SNR values,
etc.

There are two main approaches to determine the number of
elements in the mixture; we assume that single Gaussian models
(SGM) are available:

• each Gaussian, or the one with maximum variance, is split
in two [1] by a random perturbation of the mean vector and
then a few training iterations are performed to update the
parameters; this process is repeated until a termination cri-
terion is satisfied; and

• a subset of the training data is aligned with the SGM and a
k-means algorithm is used to cluster the data of each state
into a target number of clusters; each cluster represents one
element in a mixture.

There are also several criteria available [2] to stop growing the
mixture:

• when the number of frames used to estimate the Gaussian
element parameters falls below a given threshold;

• when the likelihood increase falls below a pre-set mini-
mum; and

• the Bayesian Information Criterion (BIC) [3]; the BIC con-
trols model complexity by penalizing the likelihood with
the number of parameters; if the BIC gain is negative or

below a minimum threshold, the model with the smallest
number of parameters is retained.

This paper proposes a simple algorithm that goes sequentially
through the training data, retrieving the aligned state for each frame;
if a distance criterion (c.f. section 4) is not satisfied the correspond-
ing mixture is increased, otherwise the nearest Gaussian compo-
nent is updated (sequential clustering). The state alignment is ob-
tained via forced-Viterbi decoding with SGM which are relatively
easy to initialize and train. The same alignment is also used to train
the resulting MG models; this training procedure is the well known
segmental k-means training [4] (SKM), but the Viterbi-alignment
is performed only once and not at each iteration. Avoiding align-
ment of training data at each iteration greatly reduces the total
training time.

The rest of the paper goes as follows. The speech recognition
system used in the experiments and the training and test corpora
are briefly described. Then the sequential clustering algorithm is
exposed in detail. Next the experiments and recognition results
are presented and, finally, we conclude with a discussion of the
proposed algorithm.

2. SYSTEM DESCRIPTION

Our speech recognition system uses continuous density HMM (a
density is either a single Gaussian or a mixture of Gaussians) and
the modeling units are context-dependent phones. Sharing of the
acoustic parameters between the different context-dependent units
associated to the same phone limits the total number of parame-
ters [5]. Only diagonal covariance Gaussian functions are used.
The features are the frame energy, the first nine MFCC [6] and
their first and second-order derivatives [7]; blind equalization is
used to reduce channel influence on the features.

We first train context-independent models (CI) which are used
to bootstrap context-dependent models (CD). The topology of the
CI-HMM is quite simple, as shown in figure 1. CD models use the
same topology, but there are as many entry/exit states and densities
as different left/right contexts. There are 36 CD phoneme models
(French) and 3 CI models for silence and short pauses.

3. SPEECH CORPORA

3.1. Training

for training models we use a collection of in-house corpora that
amounts to about 300h of speech data. The utterances are a mix of
isolated words and short phrases and cover most of the contextual
variability in the French language.

I - 8330-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

q_in q_out

Fig. 1. CI models topology.

3.2. Testing

We evaluate the models in some common tasks:

• Commands: isolated words or short phrases, such as “Perros-
Guirec” or “Autre rubrique” (12778 utterances);

• Digits: isolated digits (4735 utterances);

• Numbers: numbers (NN), from 00 to 99 modeled as one
word, e.g. “10: dix” or “99: quatre vingt dix-neuf”(7244
utterances); and

• TelNumbers: telephone numbers, in the usual french forms:
0 80X NN NN NN or NN NN NN NN NN (5664 utterances),
where X is a digit from 0 to 3.

For Numbers and TelNumbers, each pair (NN) counts as a sin-
gle compund word for error counting; thus recognizing 66 soixante
six in the place of 70 soixante dix counts as one error.

4. SEQUENTIAL CLUSTERING ALGORITHM

We assume that the training data is already aligned to some mod-
els 1. It is sufficient to align the data to single Gaussian models;
single Gaussian models do not deliver good performance in recog-
nition but with forced-alignment they provide good enough seg-
mentation of the data which allows to derive proper initial models
as will be shown by the results.

The idea driving the algorithm is to increase a mixture (i.e.
add a Gaussian element) when the distance between a frame and
the mixture is above a given threshold. We can set threshold values
for the maximum number of elements in a mixture and the appar-
tenance distance to control the size of the mixtures. Proceeding in
this way avoids splitting the Gaussian elements and then perform-
ing some training iterations to updated the parameters and also
avoids reading large amounts of data in memory. Each mixture-
density holds for each possible Gaussian element: a mean vector,
an accumulator (for the variances), and the number of frames k
that were used to estimate the parameters. When a new element is
added, we set the mean vector to be equal to the current frame and
the variance accumulator is set to zero. For each mixture it is given
the maximum number of elements maxElem and the maximum
distance dMax to accept the frame as belonging to the mixture.
The distance between a frame x and a mixture, is given by the min-
imum euclidean distance between the frame and the mean vectors;
let dt

j = dist(x, µt
j) denote the distance to element j in the t-th

mixture, and let i denote the nearest element and numElem(t) the
actual number of elements in the mixture. We do not use the vari-
ances because in the beginning there are no variances and it is not

1The target models’ topology could be different, but the labels identi-
fying the densities have to be transformed accordingly.

always garanteed that each element has seen enough frames to al-
low confidence in the estimated variances. It is possible to set a
second distance threshold and use the Mahalanobis distance when
all elements have seen more than a minimum number of frames;
informal tests showed that there was no gain in using Mahalanobis
distance and more, this would introduce yet another threshold to
tune. To avoid numerical problems, the mean and the variance’s
accumulator are calculated as described in [8]. After reading k
frames (current k-th frame is x) for a given mixture element i the
mean for dimension d is updated:

µi
k
d = µi

k−1
d +

xd − µi
k−1
d

k
(1)

And the value of the variance accumulator:

Si
k
d = Si

k−1
d +

(
xd − µi

k
d

)
·
(
xd − µi

k−1
d

)
(2)

The variance is given by σ2
i

k
d =

Si
k
d

k−1
. The algorithm is described

below.

for all pairs frame/density: (x; t) do
i = arg minjd

t
j

dt
i = dist(x, µt

i)
if dt

i < dMax then
update element i

else
if numElem(t) < maxElem then

increase mixture
else

update element i
end if

end if
end for

After processing all training data, the Gaussian elements that
saw less than a minimum number of frames minM could be re-
moved, or the nearest element can be found and these elements
are merged. We chose the latter approach, and we keep merging
as long as there is still an element with small mass. For densities
that are associated to less frames than minM we set the maximum
number of elements to one beforehand; we do this to avoid grow-
ing a mixture and then merging the elements back into a single
element.

This provides the initial values of Gaussian parameters and the
mixture weight of each Gaussian is set to the element mass divided
by the sum of the elements’ masses. The resulting models can then
be trained with SKM or Estimation-Maximization iterations.

4.1. Modifications

The cost of distance calculation could (possibly) be reduced by
calculating the distance to the first element in the mixture and use
this value as a threshold to abort the distance calculation for the
remaining dimensions. As the distance always increases with the
dimension, we can check its value at every few dimensions and
abort the calculation as soon as possible.

The influence of outlier frames (if detected by the forced align-
ment) can be controlled with the minM value or by changing the
update policy. It is expected that the elements representing outlier
frames will have smaller mass than the other element, thus setting

I - 834

➡ ➡

minM to a high value will remove those elements; or we can de-
cide to give more importance to outliers by not updating the mean
value for points that are within a ball with radius r around the
mean. We evaluated the approach that favorizes the outliers but
there was no significant difference in the resulting models.

5. EXPERIMENTS

5.1. Training data alignment

First we train CI models with standard SKM (aligning at each iter-
ation), with a subset of the training data (a phonetically rich subset,
with about 13h of speech) and use these models to bootstrap CD
models that are then trained (standard SKM iterations) using the
full database. The training data is then aligned to the CD-SGM
and this aligment is kept for the remaining of the training process.

5.2. Baseline models training

The Gaussians of the SGM are split (only if the mass is greater
than 50) and then a few more SKM training iterations are per-
formed with the fixed alignment. This split/train procedure is re-
peated to obtain models with 8 and 16 Gaussians per density, that
will be used as baseline for comparisons (2 and 4 Gaussian mod-
els are less interesting). Relying on the alignment obtained with
simple models may look dangerous as we can never recover from
a “bad” alignment. The alignment can always be “refreshed” with
the (better) trained models and the initialization/training process
can be performed again to estimate (better) initial models. It is
also possible to refresh the alignment and continue the training
without performing the initialization process again. We included
the results with the SGM used to align for illustration purposes.

Table 1 shows the total number of Gaussians for the baseline
models and the identifier used to present the recognition results.

expID max #Gauss/dens. #Gauss avg # Gauss/dens.
base01g 1 3180 1
base08g 8 20274 6.4
base16g 16 37543 11.8

Table 1. Model sizes for different number of Gaussians/density.

The maximum number of Gaussian elements per density is
not attained due to the limited amount of training data. Ideally,
increasing the amount of training data would allow the densities to
have the desired maximum number of elements.

5.3. Sequential clustering mixture initialization

We ran the sequential clustering algorithm to obtain initial models
with a maximum of 8, 16 and 64 Gaussians per density. In ta-
ble 2 we present the values of the thresholds and the total number
of Gaussians in the models with the identifier that is used when
presenting the results. The line g64 red will be explained later.

Threshold (maxElem, dMax and minM) values were cho-
sen to have a total number of Gaussians not too different than from
those in the baseline models and also to sample the resulting model
sizes.

expID maxElem minM dMax #Gauss
g8m20d5 8 5 18826
g8m20d10 10 18764
g8m20d20 20 18008
g8m20d33 33 15128
g8m30d17 30 17 17885
g8m50d17 50 17 17255
g16m20d5 16 5 34225
g16m20d10 10 34067
g16m20d20 20 31566
g16m20d33 33 23900
g16m30d17 30 17 31517
g16m50d17 50 17 30112
g64m20d5 64 20 5 107363
g64 red 64 — — 37543

Table 2. Threshold values and total number of Gaussians.

6. RESULTS

In table 3 the baseline recognition results (word error rate – WER)
for the described tasks are presented. The results obtained with the
initial models resulting from the presented algorithm are shown in
table 4 and after training (5 SKM iterations) in table 5.

expID Task
Commands Digits Numbers TelNumbers

base01g 1.72 2.60 8.23 15.29
base08g 1.12 1.46 5.14 11.58
base16g 1.05 1.10 5.00 10.85

Table 3. Recognition results (%WER) for the baseline models.

The results show that the initial models have worse perfor-
mance in the “hard”: tasks Numbers and TelNumbers when minM
increases, but after training the performance is comparable; per-
forming a few extra training iterations brought the results to the
confidence interval (results not presented). The other tasks are
easier and there is smaller gain with further training. This re-
sult is expected, because having less Gaussians in total reduces
the acoustic resolution of the initial models. The value of dMax
has stronger influence on the final number of Gaussians and setting
it too high will cause the models to be “blurred”, as more frames
are absorbed by each element instead of increasing the number of
elements in the mixture. In the case of larger mixtures (16 Gaus-
sians/density), reducing dMax increases performance comparing
to 8 Gaussian/density models; having more freedom to add Gaus-
sians, could possibly tune the extra Gaussians to particular details
that increase performance. The models with 64 Gaussian/density
have an enormous number of Gaussians; we later reduced this
number by finding the pairs of Gaussians that leads to the small-
est drop in likelihood when merging those two Gaussians into one.
We merged the Gaussians down to the same total number as for the
baseline 16 Gaussians/density models (table 2, last row). The re-
sults for the reduced Gaussian pool models are presented in table 6,
for models just after merging and after a few SKM iterations.

The results show that we can start from larger densities (the
cost is moderate) and then reduce the Gaussian pool to a more

I - 835

➡ ➡

expID Task
Commands Digits Numbers TelNumbers

g8m20d5 1.22 1.71 5.60 13.54
g8m20d10 1.25 1.61 5.54 13.85
g8m20d20 1.24 1.61 5.84 13.14
g8m20d33 1.24 1.77 6.09 13.14
g8m30d17 1.21 1.56 5.84 13.32
g8m50d17 1.21 1.56 5.94 13.82

g16m20d5 1.13 1.35 5.30 13.08
g16m20d10 1.13 1.41 5.59 13.43
g16m20d20 1.07 1.41 5.26 12.99
g16m20d33 1.15 1.63 5.45 12.78
g16m30d17 1.17 1.31 5.43 13.27
g16m50d17 1.15 1.33 5.59 13.85

g64m20d5 0.99 1.10 5.05 13.65

Table 4. Recognition results (%WER) for the initial models.

expID Task
Commands Digits Numbers TelNumbers

g8m20d5 1.12 1.44 5.26 12.01
g8m20d10 1.17 1.25 5.16 12.25
g8m20d20 1.27 1.44 5.36 12.18
g8m20d33 1.18 1.44 5.65 12.21
g8m30d17 1.21 1.35 5.48 11.69
g8m50d17 1.22 1.35 5.49 11.74

g16m20d5 1.03 1.27 4.85 10.97
g16m20d10 1.12 1.12 5.04 11.61
g16m20d20 1.10 1.18 4.93 11.72
g16m20d33 1.08 1.29 5.09 11.27
g16m30d17 1.14 1.03 4.94 11.28
g16m50d17 1.14 1.06 4.94 11.27
g64m20d5 0.92 0.70 4.21 10.26

Table 5. Recognition results (%WER) for models after training.

reasonable size and do better than starting from a limited pool (i.e.
16 Gaussians/density) or with the usual Gaussians splitting (which
implies in a longer training time).

7. CONCLUSION

We presented a simple algorithm to initialize mixtures of Gaus-
sian densities for HMM speech recognition; initial models of good
quality are obtained with one pass over the full training database.
The initial models deliver reasonable performance because all train-
ing data is seen, instead of a subset as would happen with a k-
means initialization. The advantage over Gaussian splitting is the
shorter training time; the cost of initialization is roughly the same
as one iteration with fixed alignment.

Initial models obtained with the presented algorithm already
give reasonable performance considering that any training itera-
tion was performed. After a few training iterations, the results are
comparable or even better (but not at a significant level) than the
baseline. Starting from densities with a larger number of elements,
performing some training iterations, then reducing the Gaussian

expID Task
Commands Digits Numbers TelNumbers

g64 red 1.06 1.03 4.76 10.65
g64 red trn 1.06 0.89 4.62 10.32

Table 6. Recognition results (%WER) for reduced models.

pool size by merging pairs of similar Gaussians and tuning the
parameters with a few more training iterations resulted in better
models than Gaussian splitting and starting from smaller densities.
This is another advantage of the proposed algorithm, to rapidly
produce good initial models based on a large number of Gaussian
functions.

It should be reminded that it is not necessary to model exactly
the distribution of the training data, as this could result in “over-
training”, i.e. the models recognize only the training data. It is suf-
ficient that the densities give a non-floored value for the probability
of an observation when it belongs to the correct search hypothesis.
In the future, we will investigate alternative ways to construct the
mixtures in a fashion that increases the probability for the correct
density with respect to the other competing densities.

8. REFERENCES

[1] Ananth Sankar, “Experiments with a Gaussian Merging-
Splitting Algorithm for HMM Training for Speech Recogni-
tion,” in Proceedings of the DARPA workshop, 1998, pp. 99–
104.

[2] Y. C. Chan, M. Siu, and B. Mak, “Pruning of state-tying
tree using bayesian information criterion with multiple mix-
tures,” in Proceedings of the International Conference on Spo-
ken Language Processing, Beijing, China, 2000, vol. IV, pp.
294–297.

[3] Gideon Schwarz, “Estimating the dimension of a model,” The
Annals of Statistics, vol. 6, no. 2, pp. 461 – 464, 1978.

[4] L. R. Rabiner, J. G. Wilpon, and B.-H. Juang, “A segmental
k-means training procedure for connected word recognition,”
AT&T Tech. Journal, vol. 64, no. 3, pp. 21–40, May 86.

[5] Katarina Bartkova and Denis Jouvet, “Modelization of allo-
phones in a speech recognition system,” in Proceedings of the
XII International Congress on Phonetical Sciences, Aix-en-
Provence, August 19-24 1991, vol. 4, pp. 474–477.

[6] S. B. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in contin-
uously spoken sentences,” IEEE Transactions on ASSP, vol.
28, no. 4, pp. 357–366, 1980.

[7] Lawrence Rabiner and Biing-Hwang Juang, Fundamentals
of Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ,
1993.

[8] Donald E. Knuth, The Art of Computer Programming, vol. 2:
Seminumerical algorithms, Addison-Wesley, Reading, Mas-
sachusetts, 1997.

I - 836

➡ ➠

