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ABSTRACT

The discrimination technique for estimating the parameters
of Gaussian mixtures that is based on the Extended Baum
transformations (EB) has had significant impact on the speech
recognition community. There appear to be no published
proofs that definitively show that these transformations in-
crease the value of an objective function with iteration (i.e.,
so-called ”growth transformations”). The proof presented
in the current paper is based on the linearization process
and the explicit growth estimate for linear forms of Gaus-
sian mixtures. We also derive new transformation formulae
for estimating the parameters of Gaussian mixtures gener-
alizing the EB algorithm, and run simulation experiments
comparing different growth transformations.

1. INTRODUCTION

The EB procedure involves two types of transformations
that can be described as follows. Let F (z) = F (zij) be
some function in variables z = (zij) and cij = zij

δ
δzij

F (z).
I. Discrete probabilities:

ẑij =
cij + zijC∑

i cij + C
(1)

where z ∈ D = {zij ≥ 0,
∑

j zij =
∑j=mi

j=1 zij = 1}

II. Gaussian mixture densities:

µ̂j = µ̂j(C) =
∑

i∈I cijyi + Cµj∑
i∈I cij + C

(2)

σ̂2
j = σ̂j(C)2 =

∑
i∈I cijy

2
i + C(µ2

j + σj
2)

∑
i∈I cij + C

− µ̂2
j (3)

where

zij =
1

(2π)1/2σj
e−(yi−µj)

2/2σ2
j (4)

and yi is a sample of training data. It was shown in [4] that
(1) are growth transformations for sufficiently large C when
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F is a rational function. Updated formulae (2, 3) for rational
functions F were obtained through discrete probability ap-
proximation of Gaussian densities [6] and have been widely
used as an alternative to direct gradient-based optimization
approaches ([8], [7]). As originally presented in our IBM
Research Report [5] we demonstrate in this paper that (1)
and (2, 3) are growth transformations for sufficiently large
C if functions F obey certain smoothness constraints. Ax-
elrod [1] has recently proposed another proof of existence
of a constant C that ensures validity of the MMIE auxiliary
function as formulated by Gunawardana et al. [3]).

2. LINEARIZATION

This principle is needed to reduce proofs of growth trans-
formation for general functions to linear forms.

Lemma 1 Let

F (z) = F̃ ({uj}) = F̃ ({gj(z)}) = F̃ ◦ g(z) (5)

where uj = gj(z), j = 1, ..m and z varies in some real vec-
tor space Rn of dimension n. Let gj(z) for all j = 1, ...m

and F (z) be differentiable at z. Let, also, δF̃ ({uj})
δuj

exist

at uj = gj(z) for all j = 1, ...m. Let, further, L(z′) ≡
∇F̃

∣∣∣
g(z)

· g(z′), z′ ∈ Rn . Let TC be a family of transfor-

mations Rn → Rn such that for some l = (l1...ln) ∈ Rn

TC(z) − z = l/C + o(1/C) if C → ∞. (Here o(ε) means
that o(ε)/ε → 0 if ε → 0). Let, further, TC(z) = z if

∇L|z · l = 0 (6)

Then for sufficiently large C TC is growth for F at z iff TC

is growth for L at z.

Proof First, from the definition of L we have
δF (z)
δzk

=
∑

j
δF̃ ({uj})

δuj

δgj(z)
δzk

= δL(z)
δzk

Next, for z′ = TC(z) and sufficiently large C we have:
F (z′)−F (z) =

∑
i

δF (z)
δzi

(zi′−zi)+o(1/C) =
∑

i
δF (z)

δzi
li/C+

o(1/C) =
∑

i
δL(z)
δzi

li/C +o(1/C) =
∑

i
δL(z)
δzi

(zi′−zi)+
o(1/C) = L(z′)−L(z)+o(1/C). Therefore for sufficiently
large C F (z′) − F (z) > 0 iff L(z′) − L(z) > 0.
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3. EB FOR DISCRETE PROBABILITIES

The following theorem is a generalization of [4].

Theorem 1 Let F (z) be a function that is defined over D =
{zij ≥ 0,

∑
zij = 1}. Let F be differentiable at z ∈ D and

let ẑ 	= z be defined as in (1). Then F (ẑ) > F (z) for suf-
ficiently large positive C and F (ẑ) < F (z) for sufficiently
small negative C.

Proof Following the linearization principle, we first assume
that F (z) = l(z) =

∑
aijzij is a linear form. Than the

transformation formula for l(x) is the following:

ẑij =
aijzij + Czij

l(z) + C
(7)

We need to show that l(ẑ) ≥ l(z). It is sufficient to prove
this inequality for each linear sub component associated with
i

j=n∑

j=1

aij ẑij ≥
j=n∑

j=1

aijzij

Therefore without loss of generality we can assume that i is
fixed and drop subscript i in the forthcoming proof (i.e. we
assume that l(z) =

∑
ajzj , where z = {zj}, zj ≥ 0 and∑

zj = 1). We have: l(ẑ) = l2(z)+Cl(z)
l(z)+C , where l2(z) :=∑

j a2
jzj . The linear case of Theorem 1 will follow from

next two lemmas.

Lemma 2
l2(z) ≥ l(z)2 (8)

Proof Let as assume that aj ≥ aj+1 and substituting z′ =∑j=n−1
j=1 zj we need to prove:

j=n−1∑

j=1

[a2
jzj + a2

n(1 − z′)] ≥
j=n−1∑

j=1

(aj − an)2z2
j +

2
j=n−1∑

j=1

(aj − an)anzj + a2
n (9)

We will prove the above formula by proving for every fixed
j (a2

j − a2
n)zj ≥ (aj − an)2z2

j + 2(aj − an)anzj . If (aj −
an)zj 	= 0 then the above inequality is equivalent to aj −
an ≥ (aj − an)zj and is obviously holds since 0 ≤ zj ≤ 1

Lemma 3 For sufficiently large |C| the following holds:
l(ẑ) > l(z) if C is positive and l(ẑ) < l(z) if C is

negative.

Proof From (8) we have the following inequalities.
l2(z) + Cl(z) ≥ l(z)2 + Cl(z),
l(ẑ) = l2(z)+Cl(z)

l(z)+C ≥ l(z)2+Cl(z)
l(z)+C if l(z) + C > 0

and l(ẑ) = l2(z)+Cl(z)
l(z)+C ≤ l(z)2+Cl(z)

l(z)+C if l(z) + C < 0.
The general case of Theorem 1 follows immediately from
the observation that (6) is equivalent to l2(z) − l(z)2 = 0
for large C.

4. EB FOR GAUSSIAN DENSITIES

For simplicity of the notation we consider the transforma-
tion (2), (3), only for a single pair of variables µ, σ, i.e.
we drop subscript j everywhere in (2, 3), (4) and also set

ẑi = 1
(2π)1/2σ̂

e−(yi−µ̂)
2
/2σ̂2

Theorem 2 Let F ({zi}), i = 1...m, be differentiable at
µ, σ and δF ({zi})

δzi
exist at zi. Let either µ̂ 	= µ or σ̂ 	= σ.

Then for sufficiently large C

F ({ẑi}) − F ({zi}) = T/C + o(1/C) (10)

Where

T =
1
σ2

{{
∑

cj [(yj − µ)2 − σ2]}2

2σ2
+[

∑
cj(yj−µ)]2} > 0

(11)
In other words, F ({ẑi}) grows proportionally to 1/C for
sufficiently large C.

Proof First, we assume that F ({zi}) = l(µ, σ) := l({zi}) :=∑i=m
i=1 aizi. Let us set l(µ̂, σ̂) := l({ẑi}) :=

∑i=m
i=1 aiẑi.

Then cj = ajzj in (2), (3). We want to prove that for suf-
ficiently large C l(µ̂, σ̂) ≥ l(µ, σ). This inequality is suffi-
ciently to prove with the precision 1/C2.

µ̂ = µ̂(C) =

∑j=m
j=1 cjyj + Cµ
∑j=m

j=1 cj + C
=

1
C

∑j=m
j=1 cjyj + µ

1
C

∑j=m
j=1 cj + 1

∼

∼ (
1
C

∑

j

cjyj+µ)(1−
∑

j cj

C
) ∼ µ+

1
C

(
∑

j

cjyj−µ
∑

j

cj)

(12)

µ̂ ∼ µ +

∑
j [cj(yj − µ)]

C
(13)

Next, we have

σ̂2 = σ̂(C)2 =

∑
j cjy

2
j + C(µ2 + σ2)

∑
j cj + C

− µ̂2 (14)

Let us compute σ̂2 using (14)
∑

j cjy
2
j + C(µ2 + σ2)

∑
j cj + C

∼

∼ (

∑
j cjy

2
j

C
+ µ2 + σ2)(1 −

∑
j cj

C
) ∼

∼ µ2 + σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 + σ2)

∑

j

cj ] (15)

µ̂2 ∼ µ2 +
2µ

C

j=m∑

j=1

cj(yj − µ) (16)
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This gives

σ̂2 ∼ µ2 + σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 + σ2)

∑

j

cj ]−

−[µ2 +
2µ

C

∑

j

cj(yj − µ)] =

= σ2 +
1
C

[
∑

j

cjy
2
j − (µ2 +σ2)

∑

j

cj −2µ
∑

j

cj(yj −µ)]

(17)
And finally

σ̂2 ∼ σ2 +

∑
j [(yj − µ)2 − σ2]cj

C
(18)

(yi − µ̂)2/σ̂2 ∼ 1
σ2

[(yi − µ)2−

−2(yi − µ)
∑

j cj(yj − µ)
C

]×

×{1 −
∑

j cj [(yj − µ)2 − σ2]
σ2C

} ∼

∼ (yi − µ)2

σ2
− 1

Cσ2
{ (yi − µ)2

σ2

∑

j

[(yj − µ)2 − σ2]cj+

+2(yi − µ)
∑

j

(yj − µ)cj} (19)

ẑi ∼ 1
(2π)1/2σ̂

e
−(yi−µ)2

2σ2 +
Ai

Cσ2 (20)

Where

Ai =
(yi − µ)2

2σ2

∑

j

[(yj−µ)2−σ2]cj+(yi−µ)
∑

j

(yj−µ)cj

Continue this we have

ẑi ∼ Ke
−(yi−µ)2

2σ2 (1 +
Ai

Cσ2
) (21)

Where

K =
1

(2π)1/2σ̂

1/σ̂ ∼ 1
σ
{1 −

∑
j cj [(yj − µ)2 − σ2]

2σ2C
} (22)

(1 +
Ai

Cσ2
){1 −

∑
j cj [(yj − µ)2 − σ2]

2σ2C
} ∼

∼ 1 +
1

Cσ2
{ (yi − µ)2

2σ2

∑

j

[(yj − µ)2 − σ2]cj+

+(yi − µ)
∑

j

(yj − µ)cj − 1/2
∑

j

cj [(yj − µ)2 − σ2]} ∼

∼ 1 +
Bi

Cσ2
(23)

Where Bi = [ (yi−µ)2

2σ2 −1/2]
∑

j [(yj −µ)2 −σ2]cj +(yi −
µ)

∑
j(yj − µ)cj

Using the last equalities we get

ẑi = zi +
Bi

Cσ2
zi (24)

Since l(µ̂, σ̂) is a linear form in the zi we have

l({ẑi}) = l({zi}) +
l({Bizi})

Cσ2
(25)

and

l({Bizi}) =
∑

i

aizi{[ (yi − µ)2

2σ2
− 1/2]×

×
∑

j

cj [(yj − µ)2 − σ2] + (yi − µ)
∑

j

cj(yj − µ)} =

=
∑

i

ci{[ (yi − µ)2

2σ2
− 1/2]

∑

j

cj [(yj − µ)2 − σ2]+

+(yi − µ)
∑

j

cj(yj − µ)} =

=
{∑j cj [(yj − µ)2 − σ2]}2

2σ2
+ [

∑

j

cj(yj − µ)]2 (26)

l({ẑi}) − l({zi}) ∼ T

C

Since by assumption either µ̂ 	= µ or σ̂ 	= σ T 	= 0. Appli-
cability of the lineriazation principle follows from the fact
that if (11) holds then the left part in the equation (6) is not
equal to zero. Q.E.D.

5. NEW GROWTH TRANSFORMATIONS

One can derive new updates for means and variances ap-
plying EB algorithm of the section 3 by introducing prob-
ability constraints for means and variances as follows. Let
us assume that 0 ≤ µj ≤ Dj , 0 ≤ σj ≤ Ej . Then we
can introduce slack variables µj ′ ≥ 0, σj ′ ≥ 0 such that
µj/Dj + µj ′/Dj = 1, σj/Ej + σj ′/Ej = 1. Then we can
compute updates as in (1), with cj as in (2, 3).

µ̂j = Djµj

∑
i cij

(yi−µj)

σ2
j

+C

∑
i cij

(yi−µj)

σ2
j

µj+DjC

σ̂j = Ej

∑
i cij [−1+

(yi−µj)2

σ2
j

]+Cσj

∑
i cij [−1+

(yi−µj)2

σ2
j

]+EjC
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If some µj < 0 one can make them positive by adding
positive constants, compute updates for new variables in the
new coordinate system and then go back to the old system
of coordinates.

6. EXPERIMENTS AND DISCUSSION

Our preliminary experiments are done for a single pair of
means and variances 0 < µ < 3, 0 < σ < 3 ( i.e. a sub-
script j can be dropped in update formulae in sections 1 and
5) and a Gaussian mixture l(µ, σ) =

∑i=100
i=1 aizi. Coeffi-

cients in this linear form ai and yi were chosen randomly.
One iteration consists of three following steps:
1. EB with the best C: Compute µs = µ̂(C′), σs = σ̂(C′)
as in (2, 3) where
C′ = argmaxC∈{1,2,...,100}l(µ̂(C), σ̂(C))
2. Modified EB with the best C: Compute µm = µ̂(C′),
σm = σ̂(C′) as in the section 5 where
C′ = argmaxC∈{1,...,100}l(µ̂(C), σ̂(C))
3. Mixture of EB and modified EB with the best C: We de-
fine the best mixture as: µ(α̃) = αµs + (1 − α)µm and
σ(α̃′) = α′σs + (1 − α′)σm where
(α̃, α̃′) = argmax(α,α′)∈[0,1]×[0,1]l(µ(α), σ(α′))
We repeatedly run three experiments (each consisting of 5
iterations: the EB (step 1), the modified EB (step 2) and
the mixture (steps 1-3, in which an output from step 3 was
fed as the input in the step 1, i.e. (µ, σ) = (µ(α̃), σ̃(α̃′))).
A typical plot of three experiments is shown in Figure 1
(values of the objective function are placed along the ordi-
nate axis). These illustrative simple numerical experiments

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

o  Mixture of EB and modifed EB with the best C

x Modifed EB with the best C

< EB with the best C

Fig. 1. Graphs of objective values for 3 maximization meth-
ods.

show that different growth transformations can exhibit dif-
ferent behavior and that combining them with appropriate
weights can improve the growth rate. This leaves open a

question for efficient computation of weights and constants
in these formula. One of the possible approaches for esti-
mating weights and constants is to treat them as parameters
and estimate them together with means and variances. This
approach will be investigated in future experiments.
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