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ABSTRACT 

This paper describes a data-driven technique for 
optimizing the acoustic models for speech recognition 
systems that target commercial applications over 
telephones.  Frame-averaged foreground log-likelihoods 
(foreground scores) correlate to recognition errors.   
These scores are used together with gender to optimize 
data weighting for the acoustic model. This process is 
interpreted as increasing the priors and associated 
parameters for poorly modeled data.  The score-based 
optimization leads to about 7% fewer semantic errors on 
a live evaluation set collected after the last data used to 
estimate the acoustic model. 

1. INTRODUCTION 

Acoustic models for commercial speech recognition 
integrate large amounts of information. In the last 5 
years, CPU speed and memory sizes have increased to the 
point where detailed acoustic models for real-time large-
vocabulary systems can include parameters targeted for 
specific challenges, often without significantly degrading 
recognition accuracy on median data.  General-purpose 
models can be built which include optimizations for 
specific acoustic conditions, for example, hands-free data 
in the car, non-native talkers, different cellular codecs 
and microphone types.  Models can also include 
optimizations for varying application types, which impose 
different language modeling requirements, for example, 
digit strings, stock quotes, name lists, or call-routing 
tasks.  As these lists grow, balancing for the different 
acoustic and language modeling combinations to build a 
general-purpose acoustic model implies an iterative, 
manual process that does not scale well as the available 
training data and supportable model sizes increase. Here 
we propose using a simple per-utterance statistic that 
correlates to recognition error rates to help automate the 
optimization. 

Approaches for optimizing acoustic models have 
argued that flaws in modeling assumptions motivate tying 
the optimization more closely to recognition error rates. 

Many of the techniques are based on replacing maximum 
likelihood estimation (MLE) with maximum mutual 
information estimation (MMIE) [1].  This approach uses 
both the MLE constraint of maximizing the likelihood of 
the observation given the transcribed word sequence and 
a simultaneous constraint of minimizing the log-
likelihood of the observation given all possible word 
sequences.  Efficient MMIE implementations have been 
developed for large vocabulary continuous speech 
recognition (LVCSR) [2,3].  Other approaches have used 
minimum classification error (MCE) together with 
simultaneous feature and model optimizations [4]. 
Usually discriminatively trained systems have shown the 
best improvements on the tasks considered during 
training.  However training optimizations, including 
relaxing the language model constraints on the list of all 
possible word sequences and adjusting the relative 
influence of the language model and the acoustic model, 
have led to improvements that generalize across LVCSR 
tasks [5,6]. 

Other improvements over MLE training have been 
made based on boosting theory, which combines 
sequences of classifiers where each successive classifier 
improves on the errors of the predecessor [7].  
Techniques have been developed to apply boosting to 
LVCSR [8], and consistent with the current work, other 
efforts have used these ideas with utterance-specific 
measures [9]. 

Considering the wide range of language modeling 
requirements (from trivial to near-conversational) and the 
variety of acoustic challenges for current commercial 
speech recognition over telephones, we implemented a 
conservative simplification of other discriminative 
training techniques.  As with other approaches, model 
parameters are concentrated for challenging acoustic 
conditions in a data-driven manner.  But instead of 
imposing even a relaxed language model and directly 
using incorrect matches, we use an acoustic error 
correlate to identify problem utterances.  Finally instead 
of a frame-based optimization we simply increase the 
weight of potential problem utterances when estimating 
model parameters. 
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Section 2 describes the foreground score statistic.  
Section 3 describes how this statistic is used to help 
optimize the models. Section 4 describes the experiment 
results. 

2. FOREGROUND SCORES 

Incorrectly assuming independence of the observation 
sequence, most speech recognition systems accumulate 
the sum of the log-likelihoods for observing each frame 
given a specific recognition hypothesis.  During testing, 
the hypothesis with the highest accumulated log-
likelihood, or score, is the recognized result. During 
maximum-likelihood training, the hypothesis is the 
transcription. The accumulating (forward and backward) 
scores are used to estimate the probability of observing 
specific frames in the underlying model states. The 
training process maximizes the scores given the training 
data.  

Fig. 1. Scatter-plot of foreground and background 
scores. 

MLE training solutions for state alignments and 
model clustering techniques for optimizing and sharing 
GMM parameters [10] achieve local maxima by 
increasing the scores for more common data. To do that, 
model parameters are concentrated for common data.  
Less common data has lower accumulated scores, and 
higher error rates.  If there are robust error improvements 
to be made by intentionally moving the models away from 
the MLE solution, then lower scores might help identify 
the problem utterances.   
Instead of considering the complete accumulated score 
from a forced alignment, we separate frames that are 
aligned to background models (usually non-speech) from 
those aligned to foreground models (the transcription). 
The scores for the foreground and background frames are 
averaged across the utterance to provide two 

measurements per utterance: the foreground score and the 
background score.  

Figure 1 shows a scatter plot of foreground and 
background scores for a sub-sample of the training set 
measured using forced-alignments with a gender-
balanced baseline acoustic model.  There is only a weak 
correlation (0.2) between the scores.  Intuitively, some 
utterances have background segments that are not well 
modeled, and others have challenging foregrounds.  
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Fig. 2. Error rates as a function of foreground scores.  

Figure 2 shows recognition error rates using a previous 
acoustic model on a task where the data is separated into 
bins by foreground scores.  More details about the tests 
and the error measures are given in Section 4.  The 
general trend is that foreground scores provide some 
prediction of recognition errors.  Utterances with scores 
in the lowest 5% lead to just over 10 times the number of 
errors of the highest scoring 6%. 

3. OPTIMIZING THE MODELS 

A simple data-weighting strategy is used to optimize the 
acoustic models.  Other more elaborate data-weighting 
techniques were explored (including jack-knifing the 
training data), but none out-performed the direct method 
described here. 

First, a baseline acoustic model is trained from boot 
models using gender-corrected data weighting so that 
each gender has equal representation in the model.  
Second, the baseline model is used to force-align the 
training data.  Third, foreground scores are computed for 
each utterance and the training data is separated into the 
lowest scoring 20% and the highest scoring 80%.  
Finally, a single training iteration is used to re-estimate 
the model parameters using a 10x increase on the data 
weighting for the worst 20% data.  This provides the final 
weighted model.  
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Increasing the data weight for the lowest-scoring data 
increases the models’ representation of the prior for that 
type of data.  Similarly by increasing the relative variance 
of the training counts associated with that data, the 
weighting increases the number of model parameters 
associated with the worst 20% of the data.

4. EXPERIMENT RESULTS 

4.1. Semantic error measure 

All experiments here measure only utterance-level 
natural-language understanding errors, or NL-errors, not 
word errors.  While these are strongly correlated, NL-
errors de-emphasize the significance of word errors on 
filler words that would not change the progression of the 
application. 

For example, consider the transcription “I’d like one 
two three” for a dialog state where the caller is prompted 
for a flight number.  The recognition result “flight one 
two three” would not lead to an NL error, but “I’d like 
one two eight” would. 

4.2. Testing data and experiment setup 

The experiments reported here do not include recognition 
rejection, and only use utterances that are parsed by the 
test grammar. All tests are with American English. 

Three probabilistic finite state grammars were used.  
The grammars were pieced together from fielded 
deployments.  The first grammar included stock quotes 
and common main-menu items like “help.”  The second 
was a flat digit grammar that allowed up to 12 digits and 
included common surrounding filler phrases.  The third 
was a general confirmation grammar with common 
yes/no variations, again including filler phrases. 

Before retraining the acoustic models, we mined 
recent data to build test sets.  Our existing acoustic 
models were used to get foreground scores for transcribed 
data that had been collected since the models were 
released.  From the score distribution we chose score 
thresholds that led to 6 bins (fg0 to fg5) ranging from the 
lowest 5% to the next 11%, 26%, 33%, 20%, and the 
highest 6%.  For each bin of data we found a similar 
number of utterances that could be parsed by each of the 
three grammars.  The total test set included about 25k 
utterances.  This was a development test. 

The graphs below average errors across the three 
grammars and show the performance for each bin (fg0 to 
fg5).  The total error measure weights the errors across 
the bins by the percentages above that reflect the 
population score density. 

The development test was used to fit two parameters: 
the data separation threshold (20%) and the increased 

weighting (factor of 10).  It also seems reasonable to 
question whether problems from less common utterances 
are stable with time.  Therefore, an evaluation test was 
built.  After the new acoustic models were finished, we 
mined data, collected since we built the training lists for 
the new models, to build a similar score-based test set.   
Unlike the development set, the evaluation set was 
collected after the training data and was typically from a 
different set of deployments. 

4.3. Recognizer 

All experiments below used the commercially available 
Nuance 8 recognizer together with the prototype acoustic 
models described here. 

4.4. Results 

Figure 3 shows NL-error rates for the baseline acoustic 
models and the weighted acoustic models on the 
development set.  The baseline models were gender-
balanced using data weighting, and the “weighted” 
models added the score-based process described in 
Section 3 together with the gender balancing. 

0

5

10

15

20

25

30

N
L

-e
rr

o
r 

%

fg0 fg1 fg2 fg3 fg4 fg5 total

baseline

weighted

Fig. 3 Dev-set NL-error: baseline, and weighted.

Figure 4 compares the same two models on the 
evaluation test-set.  As with the development set, fg0-fg2 
are improved with small degradations in the other tests.  
Overall both tests show the same 7% relative reduction of 
NL-errors. 
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Fig. 4 Eval-set NL-error: baseline, and weighted. 
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Figure 5 compares the 10x-weighted model to two 
models that move further from the baseline model.  With 
the first model, all parameters are re-estimated from a 
single iteration using only the worst 20% data.  
Compared to the 10x-weighted model, this is the same as 
infinite weighting on the worst data.  With the second 
model, we retrained from boot models and relearned 
model structure (allophonic clustering and Gaussian 
allocation) using only the worst 20% of the data.  
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Fig. 5 Eval-set NL-error: 10x weighted, worst 20% 
alone, and worst 20% from boot models. 

The total performance is the same with any of these.  
In general, a few errors are moved from the low scoring 
data to the higher scoring data. If there is a large 
application cost associated with high recognition errors 
rates in pathological conditions, then “flattening” the 
error distribution without reducing errors might also be 
an interesting trade-off. 

5. DISCUSSION 

This paper describes using frame-averaged foreground 
log-likelihoods (foreground scores) to optimize acoustic 
models for commercial speech recognition on telephones.  
Foreground scores based on forced alignments are used to 
identify low-scoring utterances. The relative weights for 
the lowest 20% are increased by a factor of 10 for a final 
training iteration. This technique leads to 7% fewer 
errors on a live evaluation test collected after the data 
used to train the models. 

Using an error-correlate to drive modeling 
optimizations is a compromise between hand-tweaked 
data weighting of difficult labeled utterance types and 
more direct discriminative training.  It targets unspecified 
modeling challenges in a data-driven manner, while 
using all available training data, and without imposing 
test grammars for training optimizations. 
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