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ABSTRACT

We describe the automatic determination of an acoustic mo-
del for speech recognition, which is very complicated and
includes latent variables, using VBEC: Variational Bayesian
Estimation and Clustering for speech recognition. We pro-
pose an efficient Gaussian Mixture Model (GMM) based
phonetic decision tree construction within the VBEC frame-
work. The proposed method features a novel approach to re-
duce the unrealistically large number of computations needed
for iterative calculations in the GMM-based decision tree
method to a practical level by assuming that each Gaus-
sian per state has the same occupancy and is represented by
the same posterior distribution for the covariance parameter.
The experimental results confirmed that VBEC automati-
cally provided a optimum model topology with the highest
performance level.

1. INTRODUCTION

Precise acoustic modeling is important in terms of speech
recognition. The acoustic model has a very complicated
structure: a category is expressed by a clustered-state tri-
phone Hidden Markov Model (HMM) that possesses an out-
put distribution represented by a Gaussian Mixture Model
(GMM). Certain algorithms have been proposed to deal with
the complicated model structure (model topology) [1, 2].
However, some heuristic tuning is required since these al-
gorithms are based on the Maximum Likelihood (ML) cri-
terion, which cannot determine the model topology because
ML increases monotonically as the number of model param-
eters increases. If we are to eliminate the need for heuristic
tuning we must find a way to determine the acoustic model
topology automatically.

Some partially successful approaches to the automatic
determination of the acoustic model topology have been re-
ported that used a Minimum Description Length or Bayesian
Information Criterion (MDL/BIC). These approaches deter-
mine the clustered-state triphone HMM structure with a sin-
gle Gaussian and the total number of single Gaussians in a
model on the assumption that the acoustic model has no la-
tent variables [3, 4]. However, the MDL/BIC criterion can-

# of clustered states

Two-phase
procedure

GMM-based
phonetic decision tree
(Proposal)

1

Optimum area

Local optimum area

Triphone HMM state clustering
with a single Gaussian model

Determining the number
of GMM components

n

Triphone HMM states 
clustering with a GMM

# of components per GMM

Fig. 1. Acoustic model topology.

not theoretically determine the total acoustic model topol-
ogy since it includes latent variables.

Recently, a new framework has been proposed for the
automatic determination of the acoustic model topology, na-
mely Variational Bayesian Estimation and Clustering for
speech recognition (VBEC) [5]). VBEC is a total Bayesian
framework using Variational Bayes (VB) [6], and can theo-
retically determine a complicated model structure by using
the VB objective function even when latent variables are
included. In previous work, automatic determination us-
ing VBEC was confirmed based on a two-phase procedure
for determining the model topology [7], i.e., clustering tri-
phone HMM states with a single Gaussian model, and then
determining the number of components per state, as shown
in Figure 1. Although this procedure could determine the
model topology within a practical computation time, the ob-
tained topology is only locally optimized at each phase and
the obtained performance was not the best.

In this study, our goal is to obtain the optimum topol-
ogy using VBEC. If clustered-state triphone HMMs with a
multiple-component GMM are constructed by using a GMM-
based phonetic decision tree [8], the model topology is au-
tomatically determined by selecting the most appropriate
of the several topologies, which maximizes the VB objec-
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tive function. Although the construction of the GMM-based
phonetic decision tree is also automatically determined within
a VBEC framework, the construction requires an unrealistic
number of computations because the VB objective function
is calculated by an iterative algorithm for each node and for
each phonetic question. To reduce the number of compu-
tations to a practical level, we propose a new approach for
realizing the phonetic decision tree method within a VBEC
framework by assuming that each Gaussian in GMM has the
same statistics.

Finally, we undertake experiments to determine the acous-
tic model topology using GMM-based decision tree con-
structions and achieve the optimum topology of an acous-
tic model with the highest performance within a practical
computation time.

2. VARIATIONAL BAYESIAN ESTIMATION AND
CLUSTERING FOR SPEECH RECOGNITION

VBEC is a total Bayesian framework: it includes two ma-
jor Bayesian abilities that are superior to the ML approach,
in that it can determine an appropriate model topology and
can classify categories robustly using a predictive posterior
[5]. In this paper, we focus on the ability of VBEC, which
can determine a model topology that includes latent vari-
ables. In this section, we briefly review VBEC (see [5, 6]
for details).

Let O = {Ot ∈ RD|t = 1, ..., T} be a set of train-
ing data sequences of D dimensional feature vectors for
a phoneme category. In the acoustic modeling of speech
recognition, the output distribution is parameterized by HM-
M and GMM as p(O, S, V |Θ, m) where S and V are sets of
HMM state and GMM component sequences, respectively.
Θ is a set of distribution parameters, e.g., the state transi-
tion, mixture weight, and mean and covariance of Gaussian
parameters. m denotes the model topology index. In the
Bayes approach, Θ, S, V and m are regarded as probabilis-
tic variables. In VB, VB posterior distributions q(Θ|O, m),
q(S, V |O, m), and q(m|O) are introduced to approximate
the true corresponding posterior distributions. The optimal
VB posterior distributions over Θ and S, V , and the appro-
priate model topology that maximizes the optimal q(m|O)
can be obtained by maximizing the following objective func-
tion:

Fm =

〈
log

p(O, S, V |Θ, m)p(Θ|m)

q(S, V |O, m)q(Θ|O, m)

〉
q(S, V |O, m)

q(Θ|O, m)

, (1)

w.r.t. q(Θ|O, m), q(S, V |O, m), and m. Here 〈f(y)〉p(y)

denotes the expectation of f(y) w.r.t. p(y). p(Θ|m) is a
prior distribution and is set as a conjugate prior distribution.

Fm is calculated by the VB posterior distributions that

are parameterized by Φ̃ ≡ {φ̃, ϕ̃, ν̃, ξ̃, η̃, R̃} defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃ij = φ0 +
∑

t γ̃t
ij

ϕ̃jk = ϕ0 +
∑

t ζ̃t
jk

ξ̃jk = ξ0 +
∑

t ζ̃t
jk

ν̃jk =
(
ξ0ν0

jk +
∑

t ζ̃t
jkOt

)
/ξ̃jk

η̃jk = η0 +
∑

t ζ̃t
jk

R̃jk,d = R0
jk,d + ξ0(ν0

jk,d − ν̃jk,d)2

+
∑

t ζ̃t
jk(Ot

d − ν̃jk,d)2

. (2)

Φ̃ is composed of γ̃t
ij , ζ̃t

jk and a set of hyper-parameters

Φ0 ≡ {φ0, ϕ0, ν0
jk, ξ0, η0, R0

jk}. γ̃t
ij and ζ̃t

jk are obtained
by q(S, V |O, m) and denote the posterior transition prob-
ability from state i to state j at time t, and the posterior
occupation probability on mixture component k in state j at
time t, respectively.

By substituting the obtained Φ̃ of VB posterior distri-
butions into Eq. (1), we obtain VB objective function Fm.
Therefore, the optimal model topology m̃ can be selected
by m̃ = arg maxm p(m|O) ≈ arg maxm Fm. In an acous-
tic model that includes latent variables, the calculation of
Fm requires an iterative algorithm similar to the expecta-
tion maximization algorithm.

3. DETERMINATION OF ACOUSTIC MODEL
TOPOLOGY USING VBEC

In this section, we explain how to realize the automatic de-
termine of the acoustic model topology using VBEC. To ob-
tain the optimum topology, we adopt a method using the
GMM-based phonetic decision tree. In the VBEC frame-
work, an appropriate phonetic question at each split is cho-
sen to increase the VB objective function Fm, unlike the
conventional approach using likelihood as the objective func-
tion. When a node n is split into a yes node (nQ

Y ) and a no
node (nQ

N ) by a question Q, the appropriate question Q̃(n)
is chosen to maximize the gain of Fm from the question set
{Q}, i.e., Q̃(n) = arg max{Q} ∆FQ(n), where

∆FQ(n) ≡ FΩ(nQ

Y
),Ω(nQ

N
) − FΩ(n) is the gain in total ob-

jective function when a node n is split by Q. By stopping
splitting when ∆FQ(n) < 0, an appropriate model topology
is selected witout using manual tuning.

There are generally two conditions for phonetic decision
tree construction [1]:

1. Frame-to-state assignments during splitting are fixed.
2. A single Gaussian for one state is used.

The assumptions are used in order to avoid the unrealistic
number of objective function computations generated by the
iterative algorithm by eliminating latent variables from the
model. Although condition 1 is also available in the GMM-
based phonetic decision tree, condition 2 is not. Therefore,
GMM-based phonetic decision tree construction takes an
unrealistic amount of computation time.
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To avoid the impractical computation, we propose a new
approach that approximates the GMM-based Fm calcula-
tion as a non-iterative algorithm by assuming that each Gaus-
sian per state has the same occupancy and is represented by
the same VB posterior distribution for the covariance. Suf-
ficient statistics of a clustered state for a node n (occupancy
ζ(n), mean vector µ(n) and covariance matrix Σ(n)) are
obtained with a non-iterative calculation. By assuming that
a k-th component Gaussian in L-component GMM has the
occupancy ζ(n)/L, mean vector µ(n) and covariance ma-
trix Σ(n) by utilizing the sufficient statistics of a state, the
VB posterior parameters in Eq. (2) are obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ̃k(n) = ϕ0 + ζ(n)/L

ξ̃k(n) = ξ0 + ζ(n)/L

ν̃k(n) =
(
ξ0µ0 + ζ(n)µ(n)/L

)
/ξ̃k(n)

η̃k(n) = η0 + ζ(n)/L

R̃k,d(n) = R0
d + ξ̃k(n)(ν0

d − ν̃k,d(n))2+
ζ(n)(Σd(n))2/L

(3)

Here, we assume that the other Gaussians of the state n have
the same occupancy and are represented by the same VB
posterior distribution for the covariance. Then, Fm is ob-
tained with a non-iterative calculation by substituting Eq.
(3) into Eq. (1). Consequently, clustered-state triphone
HMMs with a GMM are obtained with non-iterative algo-
rithms. Then, conditions 1 and 2 is dropped and VB training
is used to estimate the VB posteriors for a fixed model topol-
ogy with a given number of components. This procedure
is repeated for a range of setting of the number of compo-
nents per state. The final model is determined by selecting
the clustered-state triphone HMM with the best number of
components per state, maximizing the VB objective func-
tion Fm in Eq. (1).

4. PRELIMINARY EXPERIMENTS

Before proving the effectiveness of the proposed method,
we conducted preliminary experiments to examine the recog-
nition performance of conventional ML-based acoustic mod-
els with manually varied model topologies, as baselines with
which to compare the performance of the automatically de-
termined model topology. Also, through this examination,
we could see how the performance was distributed over the
numbers of states and components per state. Several topolo-
gies were produced with manually varied conditions for the
number of states, i.e., the sizes of the phonetic decision
trees, and the number of components per state. We obtained
a total of 216 acoustic models. The experimental conditions
are summarized in Table 1. The training data consisted of
about 3,000 Japanese sentences (4.1 hours) spoken by 30
males. The recognition data consisted of 100 Japanese city
names spoken by 25 males (a total of 2,400 words).

Figure 2 shows the results for the examined recognition
rate on a contour map. We can see a high performance
area (96 %) along an inversely proportional curve in the
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Fig. 2. Recognition rates for the number of total clustered
states and components per state.

map. The curve satisfied the relationship whereby the prod-
uct of the numbers of states and components per state was
about 20,000. Therefore, the results suggested that high
performance levels were obtained when the total number
of Gaussians was about 20,000. Moreover, we can see the
top score (98.0 %) in the high performance area where the
numbers of states and components per state were 1,000 and
15, respectively. We can also see that the other highest
scores are distributed across the region around the top rate
(white area, i.e., more than 97.0 %), which is regarded as the
optimum area. Thus, although there were points showing
high levels of performance for either the arbitrary number
of states or the arbitrary number of components per state,
these points do not necessarily indicate the optimum perfor-
mance. Namely, the optimum performance cannot be found
by the two-phase procedure, namely first determining the
number of states and then determining the number of com-
ponents per state, but by a procedure which determines the
numbers of states and components per state in one phase.

5. EXPERIMENTS

The proposed non-iterative algorithm based on VBEC us-
ing the approximate values of Fm described in Section 3
enables the automatic determination of both the numbers
of states and components. We conducted experiments to
prove the effectiveness of the proposed algorithm. The ex-
perimental conditions were the same as those described in
Section 4. Here, we employed conventional ML decoding

Table 1. Experimental conditions
Sampling rate/Quantization 16 kHz / 16 bit
Feature vector 12 - order MFCC with ∆ MFCC
Window Hamming
Frame size/shift 25/10 ms
# of states 3 (Left to Right)
# of phoneme categories 27
# of phonetic questions 44
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Fig. 3. Determined model topologies and their recognition
rates.

in recognition instead of the Bayesian Predictive Classifica-
tion (BPC) based decoding of VBEC. This was to allow us
to evaluate the pure effect of the automatic determination of
the model topology using the proposed algorithm.

The proposed non-iterative algorithm was used to pro-
duce a set of clustered-state triphone HMMs, which made
11 sets of clustered-state HMMs in total (1, 5, 10, 15, 20,
25, 30, 35, 40, 50 and 60 components per state). The se-
lected model topologies and obtained recognition rates are
plotted in Figure 3, and are overlaid on the contour map of
Figure 2. Almost all the models were located in the white
area and almost all the recognition rates were more than 97
%. Therefore, it is confirmed that each of model topologies
was selected appropriately and a high recognition rate was
obtained.

The proposed algorithm was finalized by selecting the
set of the clustered-state triphone HMMs with the highest
Fm value as the optimum acoustic model without seeing
the recognition rate. Figure 4 shows the Fm values and
the recognition rates along the line connecting the points
of the selected topologies in Figure 3, where the horizon-
tal axis is the number of components per state. Figure 4
suggests that the proposed algorithm could work well since
the recognition rate and Fm behaved similarly. Although
the recognition rate (97.9 %) at the highest Fm value fell
short of the top score (98.1 %) on the jagged line in Fig-
ure 4, the rates were close enough. Moreover, the rate of
97.9 % was comparable to the top ML rate of 98.0 % that
we obtained manually in the preliminary experiments (Sec-
tion 4). The resultant numbers of states and components per
state were 254 and 35, respectively. This combination of
numbers was substantially included in the optimum area in
Figure 2. Thus, we confirmed that our proposed method can
automatically determine the optimum acoustic model topol-
ogy.
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Fig. 4. Recognition rates and objective functions for non-
iterative VBEC construction.

6. SUMMARY

In this paper, we realized the automatic determination of
the optimum topology in an acoustic model by constructing
a Gaussian Mixture Model (GMM)-based phonetic decision
tree within a Variational Bayesian Estimation and Cluster-
ing for speech recognition (VBEC) framework. Our pro-
posed new approach in the tree construction can calculate
the Variational Bayes objective function with a non-iterative
algorithm by assuming that each Gaussian per state has the
same occupancy and is represented by the same posterior
distribution for the covariance. Experiments showed that
the obtained method could determine the optimum topology
within a practical computation time, and the performance
was comparable to the best recognition rate obtained by
the conventional maximum likelihood approach with man-
ual tuning. Thus, by using the proposed method, VBEC can
automatically determine an acoustic model topology with
the highest performance levels, enabling us to dispense with
manual tuning procedures when constructing acoustic mod-
els.
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