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ABSTRACT

This paper describes the application of Rao-Blackwellised Gibbs
sampling (RBGS) to speech recognition using switching linear dy-
namical systems (SLDSs). The SLDS is a hybrid of standard hid-
den Markov models (HMMs) and linear dynamical systems. It is
an extension of the stochastic segment model as it relaxes the as-
sumption of independent segments. SLDSs explicitly take into ac-
count the strong co-articulation present in speech. Unfortunately,
inference in SLDS is intractable unless the discrete state sequence
is known. RBGS is one approach that may be applied for both im-
proved training and decoding for this form of intractable model.
The theory of SLDS and RBGS is described, along with an effi-
cient proposal mechanism. The performance of the SLDS using
RBGS for training and inference is evaluated on the ARPA Re-
source Management task.

1. INTRODUCTION

Currently the most popular acoustic model for speech recognition
is the hidden Markov model (HMM). However, HMMs are based
on a series of assumptions some of which are known to be poor. In
particular successive speech frames are assumed to be condition-
ally independent given the state that generated them. To overcome
this limitation, segment models [1] have been proposed. These
model whole segments rather than individual frames. One exam-
ple is the stochastic segment model (SSM). This uses a standard
linear dynamical system (LDS) to model the sequence of observa-
tions within a segment. The LDS should provide both better spatial
and temporal correlation model compared to HMM.

For the stochastic segment model, segments are assumed to
be independent. The state vectors are thus initialised at the seg-
ment boundaries using the initial state vector distribution in the
LDS. This is a poor assumption for speech due to co-articulation
between the modelling units. The more states there are in a SSM
system the closer its structure is to a factor analysed HMM [2].
In contrast for SLDS the posterior distribution of the state vector
is propagated over the segment boundaries. Unfortunately, exact
inference for SLDS is intractable, as the likelihood at any time de-
pends on the entire discrete state sequence. Therefore, parameter
optimisation using the standard EM algorithm, and inference using
the Viterbi algorithm, is not feasible. Recently in the speech litera-
ture approximate decoding schemes for related state space models
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have been investigated. E.g., the interacting multiple model ap-
proximation was investigated for both inference and training in [3].

An alternative scheme that has been successfully applied to
SLDSs is based on Markov chain Monte Carlo methods [4]. Rather
than modifying the model structure, or removing any dependencies
in the state history, a sampling approach is adopted. Furthermore
for efficiency, instead of sampling from the joint discrete and con-
tinuous state space, algorithm based on Rao-Blackwellisation is
used. RBGS has previously been applied for example to tracking
of moving target in [5]. Here, the state and observation space di-
mensionalities range from 2 to 4 and the number of discrete states
is 3 at most. In this paper the RBGS and methods to apply it in
speech recognition are presented. In speech recognition, the di-
mensionalities of the state and observation space typically range
between 13 and 39, and the number of discrete states in the thou-
sands; i.e., dramatically larger than in the previous applications.
Hence the dynamic range of the continuous space statistics is much
larger. In addition to the inference algorithm a parameter optimisa-
tion scheme based on maximum likelihood state sequence is pro-
posed. This is the first study the authors are aware of where the
SLDS has been applied to speech recognition without approxima-
tions that remove some model dependencies.

This paper is organised as follows. The next section describes
the state space models in the generative model framework. In
Sec. 3, the Rao-Blackwellised Gibbs sampling with application to
speech is presented. The experiments and the results are described
in the fourth section. Section 5 concludes the paper.

2. STATE SPACE MODELS

The models presented in this paper can be viewed as general state
space models with Ns hidden discrete Markov states. In speech
recognition applications the discrete state normally represents a
phone. A hidden k-dimensional state vector, xt, is generated by
the state evolution process. This continuous state vector can be
viewed as an intermediate time evolving representation of the ob-
servation vectors. Every time instant, a p-dimensional observation
vector, ot, is generated by a linear observation process. For all
the models in this paper, the observation process is based on factor
analysis.

2.1. Generative Models

The simplest state evolution process is a discrete state dependent
vector of Gaussian distributed noise. This model is called the fac-
tor analysed HMM (FAHMM) [2]. Instead of generating the ob-
servation vectors, the underlying HMM generates vectors of latent
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variables for the factor analysis observation process. The genera-
tive model of FAHMM can be seen on the left hand side of Fig.
1 where the discrete state sequence, Q = {q1, q2, . . . , qT }, is de-
fined by a set of transition probabilities, aij = P (qt = j|qt−1 =
i). The state noise, wj , and the observation noise, vj , are dis-
tributed according to Gaussian distributions, N (µ

(x)
j ,Σ

(x)
j ) and

N (µ
(o)
j ,Σ

(o)
j ), respectively. The observation matrices, C j , de-

pend on the discrete state although any parameter in FAHMM can
be arbitrarily tied. It is also possible to use Gaussian mixture mod-
els (GMMs) for both the state and observation noise sources.

qt ∼ P (qt|qt−1) qt ∼ P (qt|qt−1)
xt = wqt xt = Aqtxt−1 + wqt

ot = Cqtxt + vqt ot = Cqtxt + vqt

Fig. 1. Generative models of a factor analysed HMM and a SLDS.

In SLDS the state vectors evolve according to a first order lin-
ear Gauss-Markov process. The generative model of a SLDS can
be seen on the right hand side of Fig. 1 where both the state transi-
tion matrices, Aj , and the observation matrices, Cj , are chosen by
the discrete state and the state evolution and observation noises are
Gaussian distributed as in FAHMM. The initial continuous state
is also Gaussian distributed, x1 ∼ N (µ(i)

q1
,Σ

(i)
q1 ). GMMs may

also be used for all the noise sources. In comparison, the SSM
would reset the continuous state vector, xt, according to the ini-
tial distribution every time the discrete state switches, qt−1 �= qt.
For further discussion on the differences between FAHMM, SLDS
and SSM including dynamic Bayesian network representations,
see [6].

2.2. Inference and Training

For the FAHMM the inference is simple due to the conditional
independence assumption. Both the standard Viterbi and forward-
backward algorithms for the HMMs can be easily implemented for
FAHMMs in O(T ) by modifying the likelihood calculations [2].
The parameter optimisation can be carried out using the EM algo-
rithm. The FAHMM can outperform standard HMMs in speech
recognition experiments. Due to the close relationship to SLDS it
is chosen as the baseline in this paper. The inference for the SSM is
more complicated since the position in the continuous state space
depends on the number of frames spent in the current segment.
However, standard optimisation methods are feasible [1], but at a
cost of O(T 2).

For the SLDS, the current position in the continuous state
space depends on the entire history of the discrete states and the
marginalisation becomes prohibitive. Exact computation of the ob-
servation likelihood or the posterior of the hidden variables given
the observation sequence has to be carried out over O(NT

s ) paths.
However, given the discrete state sequence SLDS becomes tractable
and the traditional Kalman filtering and smoothing algorithms can
be used for inference, and EM algorithm for optimising the model
parameters [6]. The intractable inference also renders any standard
decoding algorithm inadmissible. Instead of full decoding, evalu-
ation may be done if the segmentations of a number of hypotheses
were known. The segmentations for training and N -best rescoring
may be obtained from a tractable system such as the FAHMM.

3. APPROXIMATE INFERENCE FOR SLDS

Using segmented training data and N -best hypotheses may not
be optimal for SLDS since the alignments must be produced by
a tractable model with very different state evolution process. De-
terministic algorithms to search the alternatives are not feasible
due to the vast amount of possible segmentations in any realistic
utterance. Instead, a stochastic approach may be adopted. Monte
Carlo [4] simulation methods concentrate the search on areas with
high probability reducing the waste of computing power. Markov
chain Monte Carlo (MCMC) methods are based on drawing sam-
ples from proposal mechanisms with Markovian dependencies. The
MCMC methods, such as Gibbs sampling, are especially suitable
for inference in models with Markov assumptions. Other sampling
approaches would have to remove some dependencies in the model
although they may be the only alternative in sequential processing.
Since the entire utterances are available in the training and N -best
rescoring, MCMC is the optimal choice for the SLDS.

3.1. Rao-Blackwellised Gibbs sampling

The efficiency of the Gibbs sampling algorithm depends on the
initialisation and the size of the state space the samples are drawn
from. For SLDS the initial alignments produced by a FAHMM
system may be used as reasonable initialisations. To reduce the
size of the state space, Rao-Blackwellisation may be employed.
Instead of drawing the samples directly from the joint posterior
of the discrete and continuous states, the tractable substructures
in SLDS are utilised. In RBGS for SLDS, the samples are drawn
from the proposal distribution for the discrete state and given the
estimated discrete state, the continuous state space statistics can
be computed using standard methods. The sampling algorithm for
SLDS can be summarised as follows

1. initialise the discrete state sequence {q(1)
1 , . . . , q

(1)
T };

2. for iteration n > 1

• draw samples q
(n)
t ∼ P (qt|O, q

(n)
−t ), where

q
(n)
−t = {q(n)

1 , . . . , q
(n)
t−1, q

(n−1)
t+1 , . . . , q

(n−1)
T }

• estimate statistics x̂
(n)
t = E{xt|O, Q(n)} and

R̂
(n)

t = E{xtx
′
t|O, Q(n)}.

Above Q(n) denotes the entire discrete state sequence after iter-

ation n, and x̂
(n)
t and R̂

(n)

t are the standard Kalman smoother
statistics given the sequence, Q(n). Once all N iterations are fin-
ished, the final estimates can be obtained by simply averaging

γj(t) ≈ 1

N

NX
n=1

δ(j − q
(n)
t ) (2)

x̂t ≈ 1

N

NX
n=1

x̂
(n)
t (3)

R̂t ≈ 1

N

NX
n=1

R̂
(n)

t (4)

where δ(·) denotes the Dirac delta function. The statistics in Eqs.
2-4 can be shown to converge almost surely [5] toward the true
posterior statistics γj(t) = P (qt = j|O), x̂t = E{xt|O} and
R̂t = E{xtx

′
t|O}. The proposal distribution for the Gibbs sam-

pling is given in Eq. 1 where xt|t−1, Σt|t−1, xt|t and Σt|t are the
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P (qt|O, q−t) ∝ P (qt+1|qt)P (qt|qt−1)N (ot; Ctxt|t−1 + µ
(o)
t , CtΣt|t−1C

′
t + Σ

(o)
t )

˛̨
Σt|tP

−1
t|t+1 + I

˛̨− 1
2

× exp
n

x′
t|tP

−1
t|t+1mt|t+1 − 1

2
x′

t|tP
−1
t|t+1xt|t +

1

2
(mt|t+1 − xt|t)

′P −1
t|t+1

`
P −1

t|t+1 + Σ−1
t|t

´−1
P −1

t|t+1(mt|t+1 − xt|t)
o

(1)

Kalman predictor and filter statistics, respectively. The statistics
P −1

t|t+1
mt|t+1 and P −1

t|t+1
may be obtained using the backward

information filter defined by the following recursions

P −1
t|t = C ′

tΣ
(o)−1
t Ct + P −1

t|t+1

P −1
t−1|t = A′

t

`
P −1

t|t Σ
(x)
t + I

´−1
P −1

t|t At

P −1
t|t mt|t = P −1

t|t+1mt|t+1 + C ′
tΣ

(o)−1
t (ot − µ

(o)
t )

P −1
t−1|tmt−1|t = A′

t

`
P −1

t|t Σ
(x)
t + I

´−1
P −1

t|t (mt|t − µ
(x)
t )

where P −1
T |T+1

= 0. For detailed derivation of the proposal distri-
bution and the backward information filter, see [6]. Compared to
forms in [5], the recursions above include the state evolution and
observation noise mean vectors for generality. The introduction of
the backward information filter guarantees that the complexity of
the Gibbs sampling algorithm is O(T ) per iteration. A straightfor-
ward implementation of the proposal distribution using the tradi-
tional Kalman filtering and RTS smoothing algorithms would re-
sult in a complexity of O(T 2) per iteration.

The Gibbs sampling algorithm can be easily modified to sup-
port multiple component noise sources. The mixture components
are initialised on the first iteration with the discrete states, and the
Kalman and the backward information filters have to be run along
the fixed components. The only modification to the proposal distri-
bution in Eq. 1 is to multiply it by the component priors. The mix-
ture indicator sequence may also be initialised using alignments
from multiple component FAHMM.

The efficiency in speech recognition can be improved by tak-
ing advantage of the pronunciation restrictions. To keep the tran-
scriptions valid, the correct order of phones in an utterance has
to be retained during the sampling process. The utterance has to
start in the first phone and end in the last phone in the transcrip-
tion. Instead of drawing the samples from the entire set of states in
an utterance, samples from at most two discrete states have to be
drawn at a time instant. Thus, no samples have to be drawn apart
from the immediate proximity of a discrete state boundary.

3.2. Maximum Likelihood State Sequence Training

In the Monte Carlo EM [7] (MCEM) algorithm the continuous
state posterior estimates given in Eqs. 3-4 are used in the stan-
dard update formulae for the LDS parameters. These formulae are
based on the assumption that the continuous state posteriors are
Gaussian. However, for the SLDS the posteriors may be mixture
distributed and using them in the parameter estimation is not valid.
Using the first and second order statistics to estimate non-Gaussian
distributions cannot be guaranteed to converge. The convergence
of the MCEM can only be established for very simple models.

Instead of the MCEM, a maximum likelihood state sequence
(MLSS) scheme may be employed. In the experiments, alignments
obtained from the FAHMM system were used in training the SLDS
systems. In MLSS, Gibbs sampling is used to find a number of
segmentations using the FAHMM alignments as an initialisation.

The standard sufficient statistics for the LDS parameters are col-
lected along the discrete state sequence that yields the highest log-
likelihood. Given the discrete state sequence the continuous state
posteriors are Gaussian distributed. Thus, the standard LDS up-
date formulae are valid. For recent derivations see [6].

4. RESULTS

The ARPA Resource Management Corpus was used for the ex-
periments. The training data set comprised 3990 utterances. All
1200 test utterances (feb89, oct89, feb91, sep92), tst, and a 300
utterance subset of the training data, trn, with a simple word-
pair grammar, were used for evaluation. A three state triphone
FAHMM system was built using standard methods [2]. All pa-
rameters of the FAHMM, apart from the state space mean vec-
tors, were then tied at the phone level after model clustering. By
tying in this fashion the FAHMM is closely related to the single
state SLDS. By generating initial state alignments and N -best lists
using this closely related model, rather than the standard HMM,
the cross-system effects should be reduced. For these experiments
context dependent models were used as the SLDS only uses a lim-
ited first order state evolution process. For examining the multiple
mixture component performance, the observation noise distribu-
tion was split into a mixture of two Gaussians. The baseline FAH-
MMs were used to produce initial forced alignments of the training
data and the 50-best hypotheses on the evaluation data for both the
mixture configurations considered. The observation process pa-
rameters of an SLDS system were initialised using the baseline
FAHMM. A single set of LDS parameters per triphone was used.
The initial continuous state vector distribution was initialised to
the parameters of the first emitting state of the alignment FAHMM.
The state evolution noise mean vectors were set to zeroes and the
variances equal to the initial state variances. The state transition
matrices, Aqt , were all initialised to identity matrices.

The model aligned training data was used to train the SLDS
and FAHMM systems. The FAHMM system was initialised to the
baseline FAHMM and the Baum-Welch algorithm was used to in-
fer the state alignment holding the model alignment fixed. The
average log-likelihoods of the training data against the number of
iterations are shown in Fig. 2. The first four iterations correspond
to the baseline FAHMM training with full Baum-Welch algorithm
and the last nine iterations correspond to the model aligned train-
ing. For the SLDS with fixed training alignment the log-likelihood
slowly increased. Using MCEM the log-likelihood always increased
but yielded a lower final log-likelihood than the fixed alignment
training. As discussed in Sec. 3.2, the MCEM is not even guar-
anteed to increase the log-likelihood. The state posteriors for this
data were highly non-Gaussian. In initial experiments, MCEM
gave significantly worse performance than other forms of train-
ing and was not investigated further. The MLSS training log-
likelihoods with 5 iterations of Gibbs sampling are also shown.
MLSS training clearly finds alignments with higher log-likelihood
than using the fixed alignments. It was found that 5 iterations was
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Fig. 2. Average log-likelihood of the training data against the num-
ber of iterations.

enough to find the highest log-likelihood for most of the utter-
ances. Larger number of iterations up to 1,000 did not significantly
increase the log-likelihoods or improve the rescoring results.

The full decoding word error rates for the M = 1 and M = 2
component baseline FAHMMs are shown in Table 1 in the col-
umn marked FAHMM. As a reference, word error rates for state-
clustered FAHMM systems are 3.67% and 1.85% with 5 mix-
ture components. Due to the non-standard model clustering, tying
schemes and small number of mixture components, the baseline
FAHMM results are far from the best achievable. The baseline
FAHMMs were used to generate the 50-best lists for rescoring. To
give an idea of the range of these N -best lists the oracle (best) er-
ror rate on the tst data was 1.24% and the “idiot” (worst) error
rate was 52.05% for the single component system, and 1.23% and
50.93% for 2 component system. These are the bounds on sub-
sequent rescoring results. The FAHMM trained using the model
aligned data had the same performance as the baseline FAHMM.

M Task FAHMM
SLDS SLDS-RBGS

N0 N5 N0 N5

1
tst 9.56 9.55 12.08 9.73 12.18
trn 1.54 1.36 1.73 1.36 1.77

2
tst 8.90 10.32 11.57 11.26 11.57
trn 0.83 1.32 1.62 1.58 1.77

Table 1. Rescoring word error rates for the baseline FAHMM and
SLDSs trained with fixed alignments and MLSS training.

The rescoring results for the SLDS systems trained with the
fixed alignments and MLSS with 5 Gibbs sampling iterations marked
SLDS-RBGS are also shown in Table 1. Fixed alignment (N0)
and best of 5 Gibbs sampling iterations (N5) were used. The high-
est log-likelihoods were again obtained during only 5 iterations.
Unfortunately, the results were disappointing. The SLDS system
outperformed the baseline only when using the aligned training
data. Even though the log-likelihoods in the training and rescor-
ing were consistently higher, the model showed no improvements
in the word error rates. Similar results were also found using just
13-dimensional front-end to see if the difference in the state and

observation space dimensionalities was an issue. The performance
gap was worse in 100-best rescoring even when multiple states per
model were used. Also the performance of the SSM using fixed
alignments as well as RBGS was found to be inferior to that of an
FAHMM. Further results and analysis are presented in [6].

5. CONCLUSIONS

This paper has introduced a new method to train and evaluate
switching linear dynamical systems. The new scheme is based on
MCMC simulation of the discrete state space and takes advantage
of the tractable sub-structures in the models. Various implemen-
tation and efficiency issues for applying Rao-Blackwellised Gibbs
sampling to speech recognition have been described.

The performance of the SLDS and FAHMM were compared.
RBGS was successfully applied to SLDS for both training and
decoding, in terms of increasing log-likelihoods. However, the
rescoring results were disappointing. The error rates were typ-
ically worse than the baseline FAHMM that was used to gener-
ate the N -best lists. Furthermore the performance became worse
as “better” state alignments were used. Only the fixed alignment
trained models showed any performance gain over the highly sim-
plified alignment FAHMM. This error rate is still significantly worse
than a standard HMM, or FAHMM. This happens despite the RBGS
is guaranteed to converge in the limit. It appears that the lin-
ear state evolution assumption renders the model inappropriate for
speech recognition.

In this work RBGS was applied to SLDS. However, it is a
general technique that may be applied to a variety of switching
state space models. It gives an alternative approach to either simple
approximations in inference and training, or simplifying the model
structure as in variational Bayes methods.
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