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ABSTRACT

An important aspect of using Gaussian mixture models in a HMM-
based speech recognition systems is the form of the covariance
matrix. One successful approach has been to model the inverse co-
variance, precision, matrix by superimposing multiple bases. This
paper presents a general framework of basis superposition. Models
are described in terms of parameter tying of the basis coefficients
and restrictions in the number of basis. Two forms of parame-
ter tying are described which provide a compact model structure.
The first constrains the basis coefficients over multiple basis vec-
tors (or matrices). This is related to the subspace for precision and
mean (SPAM) model. The second constrains the basis coefficients
over multiple components, yielding as one example heteroscedas-
tic LDA (HLDA). Both maximum likelihood and minimum phone
error training of these models are discussed. The performance of
various configurations is examined on a conversational telephone
speech task, SwitchBoard.

1. INTRODUCTION

Gaussian Mixture Models are commonly used as the state proba-
bility density function for HMM-based LVCSR. They may be ex-
pressed as

p(�t|s) =

M�

m=1

c(m)N (�t;�
(m),Σ(m)) (1)

where �t is a d-dimensional observation vector, c(m) is the compo-
nent weight for component m, �(m) and Σ(m) are d-dimensional
mean vector and d × d symmetric covariance matrix respectively
and s denotes the HMM state. For systems with a large number
of Gaussian components and high dimensionality, the number of
parameters is dominated by those associated with the covariance
matrix, O(d2). This has lead to the use of diagonal covariance ma-
trices in most large vocabulary systems. However, structured co-
variance matrix approximations offer an alternative compact and
efficient approach. Multiple forms of approximation have been
examined. State-space models, for example the factor-analysed
HMM [1], provide one option for compact covariance matrix mod-
elling. Recently there has been interest in modelling the inverse
covariance matrix, precision matrix, as this can be highly effi-
cient during decoding. Schemes in this category include semi-
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tied covariances STC [2] (or maximum likelihood linear trans-
forms MLLT [3]), extended MLLT [4] and subspace for precision
and mean (SPAM) models [5]. It is also possible to describe het-
eroscedastic LDA [6] within this class.

In this paper, a general framework for basis superposition for
precision matrix modelling is described. The precision matrix is
modelled as a linear interpolation of a set of globally shared sym-
metric matrices (known as basis matrices or the associated basis
vectors). The interpolation weights (known as basis coefficients)
are usually Gaussian specific. The nature of the model is deter-
mined by the form of the tying of the basis coefficients. They
may be tied over multiple basis matrices, resulting in a SPAM-
like model, or over multiple components, one form of which is the
HLDA precision matrix. This paper discusses the general form
of models and how to train them using both maximum likelihood
(ML) and minimum phone error (MPE) criteria.

The rest of this paper is organised as follows. In Section 2, the
concept of basis superposition is introduced as the generic frame-
work for precision matrix modelling. Sections 3 and 4 then de-
scribe the ML and MPE estimation processes respectively. Exper-
imental results on a conversational telephone speech task are given
in Section 5.

2. PRECISION MATRIX MODELLING

When using Gaussian distributions it is convenient to express the
log likelihood function in terms of the precision matrix

log(p(�t|�)) =
1

2
log(|� (m)|) − d

2
log(2π)

−1

2
(�t − �

(m))′� (m)(�t − �
(m)) (2)

where � (m) = Σ(m)−1 is the precision matrix and � denotes the
vector of model parameters. A general form of precision matrix
can be expressed as a linear superposition of rank-1 basis matrices,

�
(m) = �

′Λ(m)
� =

n�

i=1

λ
(m)
ii �

′
i�i (3)

where �i (basis vectors) denotes the ith row of a n × d matrix �
and�′

i�i forms a rank-1 symmetric matrix. If the basis coefficients
are component specific, λ

(m)
ii , the precision matrix in equation 3

becomes a STC model when n = d and an EMLLT model when
d < n ≤ d

2
(d + 1). The use of EMLLT results in an increase

in the number of model parameters. Two forms of parameter tying
are discussed that allow a significant compression in the number of
model parameters without losing much of its modelling capability.
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2.1. Tying of basis coefficients over basis vectors

The basis coefficients λ
(m)
ii can be shared by a set of basis vectors

�ir . Let Ri denote the number of basis vectors sharing the same
coefficient, λ

(m)
ii . Equation 3 may then be expressed as

�
(m) =

n�

i=1

λ
(m)
ii

Ri�

r=1

�
′
ir�ir =

n�

i=1

λ
(m)
ii �i (4)

where �i =
�Ri

r=1 �
′
ir�ir is a symmetric matrix of rank Ri. This

form of precision matrix model is an example of SPAM model
with unconstrained mean [5].

2.2. Tying of basis coefficients over Gaussian components

The basis coefficients can also be tied over several Gaussian com-
ponents. This generalises the precision matrix expression to1

�
(m) =

k�
i=1

λ
(m)
ii �

′
i�i +

n�
i=k+1

λ
(gi(m))
ii �

′
i�i (5)

where λ
(gi(m))
ii is the shared basis coefficient for component m

and basis vector i. If all the Gaussian components are gathered
into one global group and n = d, this becomes the standard HLDA
scheme

�
(m) =

k�
i=1

λ
(m)
ii �

′
i�i +

n�
i=k+1

λii�
′
i�i (6)

where λ
(m)
ii = 1/σ

(m)2
ii and λii = 1/σ2

ii. σ
(m)2
ii and σ2

ii are
the variances of the HLDA useful and nuisance dimensions re-
spectively. However, the mean vectors of the conventional HLDA
models are confined within the useful subspace. When the mean
is not constrained to lie in this subspace, it will be referred to as an
HLDA precision matrix model (HLDA-PMM).

A simplified version of this basis coefficient tying may be im-
plemented with the HTK parameter tying scheme [7]. If all the
basis coefficients of multiple components are tied in the same fash-
ion, then it may be viewed as a tied-covariance scheme. Though
this restricts the possible tying approaches, the estimation of the
model parameters is simplified, the standard EMLLT updates may
be used. Furthermore it is only necessary to accumulate the tied
covariance matrix statistics to estimate the basis vectors, which can
reduce the memory requirements during training.

3. MAXIMUM LIKELIHOOD TRAINING

The ML estimation of the model parameters makes use of the
expectation maximisation (EM) algorithm, in the same fashion
as standard HMM parameter training. The auxiliary function for
these models may be expressed as

Q(�, �̂) = K +
1

2

M�
m=1

β(m)
�

log
�
|�̂ (m)|

�

−
n�

i=1

λ̂
(m)
ii

Ri�
r=1

�̂i�
(m)
�̂
′
i

�
(7)

1A more general expression is possible where the basis coefficient tying
over multiple basis vectors is incorporated into the scheme.

where K is a constant subsuming the terms independent of �̂ and

�
(m) =

�T
t=1 γm(t)(�t − �̂(m))(�t − �̂(m))′�T

t=1 γm(t)
(8)

β(m) =

T�
t=1

γm(t) (9)

are the required statistics. γm(t) is the probability of component
m at time t using the current parameters �̂. In this general basis
superposition framework, the mean vectors are not constrained,
though in the same fashion as the SPAM or HLDA models they
may be tied. The precision matrix parameters are updated in an
iterative fashion, alternating between the updates of basis vectors
and coefficients.

There is no closed form solution for the update of the ba-
sis vectors. A row by row second order gradient optimisation
method is employed using the gradient vector and the Hessian ma-
trix evaluated at the current estimate [8]. This requires full vari-
ance statistics,� (m), to be accumulated, making the basis vector
update both computational expensive and memory intensive. Fur-
thermore, it is also highly sensitive to the initial values of the basis
vectors. Thus, a good starting point is important to ensure fast
convergence.

Component specific coefficients, which may be shared over
multiple basis vectors, can be updated using an iterative closed
form solution as follows

λ
(m)
ii = λ̂

(m)
ii + ∆

(m)
ii (10)

∆
(m)
ii =

Ri�
r=1

�
�̂ir�

(m)
�̂
′
ir

�−1

−
Ri�

r=1

�
�̂irΣ̂

(m)
�̂
′
ir

�−1

(11)

where Ri again specifies the basis vectors sharing the same coef-
ficient. When Ri = 1, equation 11 simplifies to the EMLLT ad-
ditive2 update given in [4]. However, if the basis coefficients are
tied over different Gaussian components, no closed form solution
exists. A second order gradient optimisation scheme is employed.
This yields the following update formula

∆
(m)
ii = −η

���
�	

�
m∈Mi

β(m)
�
�̂iΣ̂

(m)
�̂′

i − �̂i�
(m)�̂′

i

�

�
m∈Mi

β(m)
�
�̂iΣ̂

(m)
�̂′

i

�2


��
��

where Mi denotes the set of Gaussian components sharing the
same basis coefficient and η is the gradient optimisation step size.
As it is possible to compute the auxiliary function value given the
sufficient statistics, it is possible to reduce the value of η until the
auxiliary function for the component increases.

As previously mentioned, the update of the basis vectors is
memory intensive. If a good set of initial basis vectors is found
(usually by stacking several sets of STC basis vectors together),
only the basis coefficients need to be updated. The required statis-
tics reduces to �̂i�

(m)�̂′
i for 1 ≤ i ≤ n. This significantly

reduces the amount of compute and memory usage.
In LVCSR systems, a variance floor is commonly used to set a

lower bound to the variance elements. Unlike the STC and HLDA
models, conventional variance floor techniques are not directly ap-
plicable to basis superposition precision matrix models when the

2There is an alternative update rule presented in [4] called the multi-
plicative update formula. This update restricts the basis coefficients to take
only positive values.
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number of basis vectors exceeds the feature dimensionality. If the
variance floor is applied to the resultant precision matrix, then the
computationally efficient calculation of the log-likelihoods [4] is
not possible. In this work the flooring is directly applied to the in-
dividual full variance statistics, � (m). Only the elements on the
leading diagonal are floored as in HTK [7].

4. MPE ESTIMATION OF EMLLT PARAMETERS

Discriminative training has been found to provide significant gains
in performance over conventional ML training for LVCSR [9].
Discriminative training has been successfully applied on SPAM
models using the Maximum Mutual Information (MMI) training
criterion [5]. In this section, discriminative training of EMLLT
models will be presented using the MPE criterion. The approach
used is applicable to all the tying schemes described.

The objective function for MPE training is given by [9]

FMPE(�) =

R�

r=1

�sN
sn=1 pθ(Or|sn)κP (sn)RPA(sn, sr)�sD

sd=1 pθ(Or|sd)κP (sd)
(12)

where sr is the correct transcription for the rth speech data Or .
pθ(O|s) denotes the likelihood probability of the speech data O
given the transcription s and �. P (s) is the language model proba-
bility for sentence s. RPA(sn, sr) denotes the raw phone accuracy
of the sentence sn given the correct sentence sr . κ is a scaling
factor and can be adjusted to improve test-set performance. This
objective function can be maximised using the following weak-
sense auxiliary function [9]

Qmpe(�, �̂) = Qnum(�, �̂) −Qden(�, �̂) +

Qsm(�, �̂) + Qml(�, �̂) (13)

The numerator and denominator auxiliary functions, Qnum(�, �̂)

and Qden(�, �̂), have the same form as equation 7. However,
in each case the form of the “posterior”, γm(t) is altered in the
same fashion as standard MPE training. For more details of this
see [10]. The smoothing term, Qsm(�, �̂), satisfies the constraint
that it is a maximum at the current parameter values, �̂. This may
be written in the same form as equation 7 with β

(m)
sm = Dm and

�
(m)
sm = Σ(m). The smoothing constant, Dm, is adjusted to

ensure stability of the MPE estimation. The final term in equa-
tion 13 corresponds to a prior based around the ML statistics. This
is I-smoothing [10]. Again the form of equation 7 is used with
β

(m)
ml = τ and � (m)

ml is the full variance ML statistics. The I-
smoothing constant τ is determined empirically [10]. The overall
statistics required by equation 13 can be expressed in terms of the
individual statistics, so that

�
(m)
mpe =

1

β
(m)
mpe

�
β(m)

num�
(m)
num − β

(m)
den�

(m)
den +

DmΣ(m) + τ�
(m)
ml

�
(14)

β(m)
mpe = β

(m)
den − β

(m)
den + Dm + τ (15)

Thus, the ML update formulae described in Section 3 can be used
directly for MPE training by replacing the ML statistics with those
in equation 14 and 15.

The smoothing constant, Dm, is set in the same fashion as [9],

Dm = arg max
i

�
max

�
Eβ

(m)
den , 2Di

��
(16)

where Di is the value of smoothing constant that ensures posi-
tive variance in the ith dimension and E is a configurable constant.
However, to ensure stability of estimation and positive-definiteness
of a non-diagonal covariance matrix, a larger value of Dm may be
required when updating basis vectors. Unfortunately, this slows
down the convergence of the mean estimation. Here, a modified
approach is proposed where different smoothing constant values
are used for the updates of the mean vectors and parameters in-
volving the precision matrix structure. For mean estimation, equa-
tion 16 is used to determine Dm. This value is then used as the
initial value of Dm for calculating the required statistics given by
equation 14 and 15. The value of Dm is then gradually increased
until� (m)

mpe becomes positive definite.

5. EXPERIMENTAL RESULTS

Systems were trained using the 296 hours h5etrain03 Switch-
board English acoustic training set. 12 PLP coefficients were ex-
tracted, including the C0 term, and the first, second and third deriva-
tives were appended to form a 52-dimensional feature vector. Side-
based Cepstral Mean Normalisation (CMN), Cepstral Variance Nor-
malisation (CVN) and Vocal Tract Length Normalisation (VTLN)
were also used. Either HLDA, STC, or EMLLT was then applied
to this feature vector. All models were gender independent, us-
ing decision tree state-clustered triphone models with 6192 distinct
states. The experimental results presented in this paper are based
on the 2.96 hours dev01sub evaluation test-set of the Switch-
board English task using a 58k-word trigram language model. The
baseline system was a 16-component HLDA diagonal covariance
system.

Since both EMLLT and HLDA may be viewed as precision
matrix modelling techniques, initial experiments investigated the
interaction of these two approaches. Table 1 shows the perfor-

System Matrix Dimensions WER (%)

HLDA 39 x 52 33.5
HLDA+EMLLT 78 x 39 + 39 x 52 33.1

(STC) 52 x 52 33.3
EMLLT 78 x 52 32.6

91 x 52 32.7

Table 1. Comparisons of 16-component precision matrix models
on the dev01sub test set

mance of various forms of HLDA, EMLLT and STC systems.
The baseline HLDA system used a 13-dimensional nuisance space.
The feature vector was thus projected from 52 to 39 dimensions.
Building an EMLLT system (n=78) on the 39-dimensional pro-
jected space (HLDA+EMLLT), reduced the error rate by about
0.4% absolute. Rather than building systems in the projected space,
they may be built in the original 52 dimensional. Note in this
space the mean vector will also be 52 dimensional. Using a STC
system the error rate was slightly better than the HLDA system,
but worse than the HLDA+EMLLT system, despite having the ex-
tended mean vectors. Two EMLLT systems were then built. One
using n = 78, the other n = 91. Both systems showed significant
gains the STC system and the HLDA+EMLLT system.

In the previous experiments HLDA was run as a projection
scheme rather than as a tied precision matrix model. Table 2 shows
the performance of the HLDA-PMM model. Initially the basis
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System Update Average Log WER (%)
Parameters Likelihood

HLDA-PMM Basis -54.51 33.2
EHLDA-PMM Coefficients -54.22 32.9

EHLDA-PMM
Basis Vectors

-53.97 32.7
& Coefficients

Table 2. Comparisons of 16-component HLDA precision matrix
models on the dev01sub test set

vectors were fixed and only the means and basis coefficients were
updated. By using mean vectors in the full 52 dimensional space
the error rate was reduced by 0.3% absolute over the HLDA sys-
tem. Note the model for the 13 nuisance dimensions remained
unaltered. An extended version of this model was built, where the
HLDA basis were appended by a set of 39 (the static, delta and
delta-delta) identity vectors. This EHLDA-PMM system was then
trained again only updating the basis coefficients. This further de-
creased the error rate by 0.3%. For the EHLDA-PMM systems the
basis vectors were then also updated. This gave a further 0.2%
gain in performance. However this EHLDA+PMM gave about the
same performance as the EMLLT system in table 1. For this con-
figuration the additional HLDA basis and global basis coefficients
gave no gain in performance. It is hoped that alternative more flex-
ible basis tying will yield greater gains.

The systems presented so far have been simpler than those typ-
ically trained on this data. MPE training is normally used with 28
component per state rather than 16. It was not practical to gather
statistics for the full 28 component system. Hence for the 28 com-
ponent EMLLT experiments a tied-covariance system was built.
The standard 16-component HLDA system was used as the start-
ing point for the EMLLT system during the iterative mixture split-
ting for this model. However, during the splitting, only distinct
means were generated, covariance matrices were tied. Thus the
total number of distinct covariance per state was 16, though there
were 28 Gaussian components3. An EMLLT system was then built
on this model set.

System Number of WER (%)
Components ML MPE

HLDA
16

33.5 30.8
EMLLT 32.6 30.1

HLDA 28 32.3 29.9
EMLLT 28� 16Σ 31.9 29.6

Table 3. Comparison of WER for MPE trained HLDA and EM-
LLT models on the dev01sub test set

Table 3 shows the results of MPE training of the 16 compo-
nent HLDA and EMLLT (78 basis) systems. For both systems
significant gains were obtained using MPE training. The EMLLT
system was 0.7% absolute better than the HLDA system after MPE
training. The HLDA system was then iterative split, either in the
standard for the HLDA system or in tied-covariance fashion, to 28
components. The results for both MLE and MPE training are also
shown in table 3. The gains of EMLLT system over the HLDA
system was significantly smaller for this larger system than the 16

3Compared to the standard 28 component system this was only 0.1%
absolute worse in error rate.

component gains. This gain was reduced to only 0.3% absolute
after MPE training. Using a pair-wise significance test, this was
not a significant difference. This reduction in performance gain is
probably due to the increased number of parameters in the EM-
LLT system. Additional tying, either within the SPAM or sharing
basis coefficients over multiple components may yield improved
performance.

6. CONCLUSIONS

This paper has presented a generic framework of basis superposi-
tion for precision matrix modelling. Basis vectors are globally tied
while basis coefficients are component specific parameters that can
be tied to eliminate redundancies. If the basis coefficients are un-
tied, this form of model describes the STC and EMLLT models.
Tying these basis coefficients over different basis vectors gives the
SPAM model. Alternatively, basis coefficients can be tied over
multiple Gaussian components. This paper illustrated HLDA and
tied-variance systems as two simple examples of such tying. These
models were found to give similar performance, but fewer model
parameters compared to those with untied coefficients, Finally, this
paper discussed the theory and experimental results of MPE train-
ing on EMLLT models.
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