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ABSTRACT

We test the nonlinear symplectic maximum-likelihood transfor-
mation (SMLT) on two large-vocabulary, conversational speech
recognition tasks: IBM’s Superhuman test and the DARPA 2003
Rich Transcription (RT03) test. Features in these tests are com-
puted via linear discriminant analysis (LDA) on spliced MFCC
features and subsequent transformation of the projected fea-
tures using either a maximum-likelihood linear transformation
(MLLT), an SMLT, or both. In contrast to previous tests of
the SMLT on TIMIT phone recognition with static and delta
MFCCs, these tests use a more difficult task and very different
features. The four results of this work are that both LDA+MLLT
and LDA+SMLT systems outperform an LDA-only system; the
LDA+MLLT system outperforms the LDA+SMLT system (but
the MLLT has 20 times more parameters than the SMLT); small
improvements over an LDA+MLLT system are obtained with an
LDA+MLLT+SMLT system on well-matched material; and no im-
provements are obtained using two class-dependent SMLTs in an
LDA+MLLT+SMLT system.

1. INTRODUCTION

Most automatic speech recognition (ASR) systems use hidden
Markov models (HMMs) with mixtures of diagonal-covariance
Gaussians as the state-conditional observation densities. The use
of diagonal-covariance Gaussians, which is typically justified for
computational reasons or concerns about data sparsity, can degrade
recognition performance [1]. Inaccurate modeling of continuous
sources of inter-feature correlation is one cause of this degradation.
Methods that attempt to address this problem can be divided into
two major classes. The first class uses Gaussian mixture compo-
nents with a richer covariance structure than diagonal covariances
and reduces the number of parameters that must be estimated from
training data by tying some parameters across models. An exam-
ple is semi-tied covariance matrices [2]. The second class trans-
forms the recognition features to better satisfy the constraints of
the diagonal-covariance models. Examples include state-specific
principal component analysis [1] and the MLLT [3].

All previous approaches assume that independent or decorre-
lated components mix linearly to generate the observed data. How-
ever, this assumption is unjustified for most acoustic features used
in ASR. For example, in the Mel-frequency cepstral coefficients
(MFCC) representation, coarticulation effects and additive noise
combine nonlinearly with the information about vocal tract shape
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that is important for recognition. Thus, nonlinear feature trans-
forms are a promising approach to improved acoustic modeling.

In [4], a unified feature transformation framework that esti-
mates the parameters of a nonlinear transform and the probabilistic
model that jointly minimize the relative entropy between the true
likelihood and its estimate based on the model was introduced.
An iterative algorithm to jointly estimate the parameters of a class
of volume preserving transforms — namely reflecting symplectic
maps — and the parameters of the model is described also in [4].
This algorithm is applied to TIMIT phone recognition.

In this paper, we test the performance of the SMLT on two
large-vocabulary, conversational speech recognition tasks: IBM’s
Superhuman test [5] and the DARPA 2003 Rich Transcription
(RTO03) test. Conversational speech recognition is a significantly
more difficult task than TIMIT phone recognition. Also, the cur-
rent work uses features computed by a linear projection of spliced
cepstra, while the earlier work used static and delta MFCC fea-
tures. As will be discussed further, this is an important difference
because the current implementation of SMLT imposes a partition
of the input feature space into two half-spaces.

2. PROBLEM FORMULATION

The goal of our work is to search for a map of the features that
improves the validity of the diagonal-covariance Gaussian mix-
ture HMM in the new feature space. First, we describe our ap-
proach for designing a global transform, then we generalize to
class-dependent transforms.

2.1. A Global Volume-Preserving Transform

As shown in the following proposition, the problem may be re-
duced to maximum likelihood estimation (MLE) of the model
and map parameters; however, we first need to define volume-
preserving maps in R, where n is an arbitrary positive integer.
Definition: A C*° map f : S, — S, where S; C R" and

Sy C R" is volume-preserving if and only if ‘det (%) =1

Vo € S;.

Proposition: Let y* = f(z') be an arbitrary one-to-one C*°
volume-preserving map of the random vector X' at time ¢ in R
to Y'* in R”, and let Px(y) be the estimated likelihood using an
HMM, where y = y*---y*---yT, and T is the length of the ut-
terance. The map f*(.) and the set of HMM parameters A* jointly
minimize the relative entropy between the hypothesized and the
true likelihoods of Y if and only if they also maximize the ex-
pected log likelihood based on the model, Epy)[log Pa(Y)].

ICASSP 2004



Using the definition of volume-preserving maps, the proof of
the proposition is straightforward [4].

2.2. Strong-Sense Class-Dependent Transforms

In weak-sense class dependency, features have observable values
for all classes, but the features and some class variables are condi-
tionally independent given a set of classes [6]. This increases the
computational and storage requirements of the system, and results
in the introduction of meaningless models that degrade the perfor-
mance of the recognizer. Features are said to be class-dependent
in the strong sense if they are assumed to be observable only
for one class or cluster of classes, but are undefined for the re-
maining classes. In the following, the generation of strong-sense
class-dependent features using volume-preserving transforms is
described.

Let us define a set of functions {fi(.)}{=; such that y; =
fi(z) is an arbitrary one-to-one map of the random vector X in
R™ to Y; in R™. The relation between the joint class-conditional
probability of X and Y; is

PX|C(.’L‘|C,')

Py, 10(fi(z)|ei) —,
' |det(2L0)|

ey

where det(aaii) is the determinant of the Jacobian matrix of the
map f;(.) [7].

Therefore, the Bayesian classification rule for the classifiers
that use a set of class-dependent features, {yi}le becomes

Pmc(fi(x)|c)P(c)|det(3aJ;

I E))

¢ = arg max
c€ { 1, "]}
Equation 2 shows that we can design strong-sense class-
dependent features for any statistical recognition or classification
system by accounting for the determinant of the Jacobian matrix in
the decision rule [8]. Therefore, the Bayesian classification rule for
the classifiers that use a set of class-dependent features, {y,-}le
generated using a set of volume-preserving maps becomes

¢ = arg max Py, (fi(x)|ci)P(ci). 3)
ce{l,--,J}

This means that the decoding is unaffected by using class-
dependent volume-preserving transforms. To train the parameters
of these class-dependent transforms, the following lemma gen-
eralizes the previous proposition for the case of strong-sense
class-dependent features.

Lemma: Let y! = f;(z') fori = 1,---,.J be arbitrary one-
to-one C™ volume-preserving maps of the random vector X* at
time ¢ in ®” to Y} in ®”, and let y* = ¢yl if ! = ¢,y =
y'-- -yt -y, T is the utterance length in frames, and Py (y) be
the estimated likelihood using an HMM, where A = {A; };-]:1. The
set of maps {f; (.)}/=; and the set of parameters {A} }:_; jointly
minimize the relative entropy between the hypothesized and the
true likelihood of Y if and only if they also maximize the expected

log likelihood based on the model, Ep(y)[log Pr(y)].

3. IMPLEMENTATION OF THE MAXIMUM
LIKELIHOOD APPROACH

In the previous section, we showed that by using a volume-
preserving map, the problem is reduced to maximizing the like-
lihood of the training data in the new feature space. In this section,
we use a symplectic map to generate the new set of features.

3.1. Symplectic Maps

Symplectic maps are volume-preserving maps that can be repre-
sented by scalar functions. This interesting result allows us to
jointly optimize the parameters of the symplectic map and the
model parameters using the EM algorithm or one of its incremental
forms [9].

Let x = (z1,22), and y = (y1,y2), with z1,22,y1,y2 €
R 2, then any reflecting symplectic map can be represented by

Yy = élJl—a‘g(m), 4
X2
T

p = a— I 5)
8y1

where V() and T'(-) are two arbitrary scalar functions [10]. We
parameterize these scalar functions with three-layer feed-forward
neural networks

M

V(u,A,C) = > ¢S(aju), 6)
j=1
M

T(u,B,D) = Y d;S(bu), ()
j=1

where S(.) is a nonlinear function such as the sigmoid or hyper-
bolic tangent, a; is the jth row of the M x n matrix A, c; is the
jth element of the M x 1 vector C, b; is the jth row of the M x n
matrix B, and d; is the jth element of the M x 1 vector D. The pa-
rameters of the neural networks and the parameters of the model
are jointly optimized to maximize the likelihood of the training
data.

3.2. Joint Optimization of The Map and Model Parameters

Using the EM algorithm, the auxiliary function [9] to be maxi-
mized is
Q@ 2") = Eellog P(y,¢|2" )]y, "], ®)

where ( € £ is the state sequence corresponding to the se-
quence of observations 2 € R"*7 that are transformed to the
sequence y € R"*7T, T is the sequence length in frames, and
dF = (Ak , Wk ) is the set of the recognizer parameters and sym-
plectic parameters at iteration k of the algorithm. The update equa-
tions for the HMM parameters are unaffected by the introduction
of the feature transform, and therefore are not given here.

We assume that the recognizer models the conditional prob-
ability density function (PDF) of the observation as a mixture of
diagonal-covariance Gaussians, and therefore

0Q(@*F, &+ 3 Py, m| @) (i — y})
dy; ; P(yi|®*) o2

mj

,9)

N

i=1 m=1

where fi,,j, and O’,,Qn]- are the mean and the variance of the jth
element of the mth PDF respectively, N is the number of frames
in the training data, and K is the total number of Gaussian models.

Let the nonlinearity, S(.), in the neural networks be the hy-
perbolic tangent. Starting with A and B, to update the values of
the symplectic parameters a4, and by, for ¢ = 1,2,--- , M, and
forr =1,2,---, 3, we have to calculate the partial derivative of
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the auxiliary function with respect to these parameters using the
following relations

IQ(2*, @11
dagr

9Q(2*, ) ayy,
Oy dagr

e

~.
Il

<. _
i M“’“’
Il

IQ(2*, 1) ayy;

10
+ 3y Dag,’ (10)
and
0Q(e*, @) _ Z_: 0@, &) oy )
s T oy Oby
where
2.’E2T Zthl (chahjS(ahxz)[l — 52(ahx2)])
oyi; forr #j
aaqr - 2.’E2T 22/[:1 (chahjS(ahxz)[l —_ Sz(ahiz)])
—cq[l — S%(agz2)] forr =3
(12)
Iy, 2. Oy Oysy
= = 13
dayr ; dagr Oyrr’ a3
9y2; = — % (dhbh 'bhkS(bhy1)[1 — SQ(bhyl)]) (14)
6y1k Pt J I}
and
2y1r Yoney (crba; S(bry1)[1 — 5% (bra2)])
Oy2; forr # j
obgr 291 Yoney (enbn; S(Ory1)[1 — 5% (bnx2)])
—dy[1 — S?*(byy1)] forr =3
(15)
For C and D, we have the following relations
9Q(@k, @) Z 9Q(@*, 241 ay,;
OJcq = y1j Ocy
2 0Q(e*, ") ays,
+ —_ , (16
; 8y2j 8cq ( )
and
8Q(‘I’k, (pk'+1) B i 8Q(‘I’k, @k%—l) 8y2j an
0dg P Oy2; od,’
where
M
Bl = aull = 8% (ag2)) ()

[VE]

0ys2; Oy1k 0y,
— , 19
0cq — Ocq OY1k (19)
and
s
S = bull =S (b)) (20)

Using Equations 9 to 20, the values of the symplectic map
parameters can be updated in each iteration using any gradient-
based optimization algorithm [4].

4. EXPERIMENTS

We tested the SMLT in a number of configurations on two large-
vocabulary, conversational tasks: IBM’s Superhuman test [5] and
the DARPA 2003 Rich Transcription (RT03) test. The Superhu-
man test comprises data from five sources of conversational Amer-
ican English, namely the Switchboard portion of the 1998 Hub
Se test (swb98), one meeting from the ICSI meeting corpus [11]
(mtg), two collections of call center data (cc/ and cc2), and the
test set from the IBM Voicemail corpus [12] (vm). The RT-03 test
material is two-party telephone conversations, like the swb98 por-
tion of the Superhuman test, but some of the material was collected
more recently, and it is about three times longer than swb98.

The raw features for the recognition system used in the tests
were 18-dimensional MFCC features computed every 10 ms. from
25-ms. frames with a Mel filter bank that spanned 0.125-3.8 kHz.
The recognition features were computed from the raw features by
splicing together nine frames of raw features (4 frames around
the current frame), projecting the 162-dim. spliced features to 60
dimensions using an LDA projection, and then optionally trans-
forming the 60-dim. projected features with one or more trans-
forms intended to reduce the mismatch between the statistics of
the final features and the constraints of the diagonal-covariance
Gaussian mixtures that model the HMM observation densities. We
tested five different configurations of the LDA projection and sub-
sequent transforms:

L the LDA projection alone;
L+S the LDA projection followed by a nonlinear SMLT;
L+M the LDA projection followed by a linear MLLT;

L+M+S the LDA projection, then a linear MLLT, then a nonlinear
SMLT; and

L+M+S2 the LDA projection, then a linear MLLT, then two class-
dependent SMLTs, one for speech states and one for non-
speech states.

We tested these configurations in order to answer three ques-
tions. First, because the SMLT is a nonlinear transform, will an
LDA+SMLT cascade match or improve on the performance of
an LDA+MLLT cascade? Second, will an LDA+MLLT+SMLT
cascade outperform an LDA+MLLT cascade, given the flexibility
that the nonlinear SMLT offers? Finally, can we obtain additional
improvements in recognition performance with multiple, class-
dependent SMLTs, taking full advantage of the SMLT’s volume-
preserving property?

The acoustic model training data were 315 hours of material
from the Switchboard, Switchboard Cellular, and Callhome En-
glish corpora. For all five feature sets, an acoustic model compris-
ing 4807 context-dependent states and 156K diagonal-covariance
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Superhuman
transform | swb98 mtg ccl cc2 vm  all | RT03
L 476 580 68.1 485 402 525 -
L+S 469 574 682 479 393 519 -
L+M 43.8 51.7 656 417 354 47.6| 399
L+M+S 435 51.8 656 414 354 475 39.7
L+M+S2 | 435 519 654 414 353 475\ 397

Table 1. Word error rates (%) on the IBM Superhuman test
and the RT-03 test for features generated with an LDA trans-
form (L), LDA+SMLT transform (L+S), LDA+MLLT trans-
form (L+M), LDA+MLLT+SMLT transform (L+M+S) or with an
LDA+MLLT transform followed by one of two class-dependent
SMLTs (L+M+S2).

Gaussian mixtures was used. The states were clustered using de-
cision trees that could ask questions about phone identity within
the current word in a +5-phone window. The number of Gaus-
sian mixtures assigned to a state was chosen by maximizing the
Bayesian Information Criterion (BIC). The decision trees and al-
location of mixture components to states were based on the L+M
feature space.

The Superhuman test was run using an interpolation of four
back-off trigram language models (LMs) using modified Kneser-
Ney smoothing. The data used to train the four component LMs
were 3M words from Switchboard, 160M words from Broadcast
News, 1M words from Voicemail, and 600K words of call cen-
ter data [5]. The RTO3 test was run using an interpolation of
four back-off 4-gram LMs using modified Kneser-Ney smooth-
ing. The component LMs were trained on 3M words of Switch-
board, 58M words of web data collected and distributed by the
University of Washington, 3M words of Broadcast News relevant
to Switchboard topics, and 7M words from the English Gigaword
corpus [13]. Decoding was done using a Viterbi decoder operating
on a statically compiled decoding graph and employing a hierar-
chical Gaussian acoustic model [13].

5. RESULTS AND DISCUSSION

The results for our tests of the various transform configurations
on the Superhuman and RTO3 tests are presented in Table 1. A
comparison of the L, L+S, and L+M results shows that in al-
most all cases, the use of an SMLT or MLLT transform improves
performance over using only the LDA projection, and that the
LDA+MLLT cascade consistently outperforms the LDA+SMLT
cascade. This can be partially attributed to the fact that MLLT
has roughly 20 times more parameters than the current implemen-
tation of SMLT. It should also be noted that the LDA solution
is invariant to full-rank linear transforms such as the MLLT, but
that no such invariance exists for nonlinear transforms such as the
SMLT. A comparison of the L+M and L+M4+S results shows a
small advantage for the LDA+MLLT+SMLT cascade, especially
on the swb98 and RT03 tasks — tasks that are well matched to the
training data. A number of factors may account for the relatively
small improvement obtained with the SMLT: (1) the limited num-
ber of parameters in the SMLT, (2) the lack of a natural partition
of the LDA+MLLT feature space into two half-spaces (recall that
the implementation used for the reflecting symplectic transform
imposes a partition of the feature space), and (3) optimization of

the decision trees and mixture allocation to the LDA+MLLT fea-
ture space. Finally, we see no significant improvement with the
two class-dependent SMLTs over the L+M+S results. This result
is consistent with results on the TIMIT database reported in [8] for
the SMLT and results reported for class-dependent MLLTSs in [3].
We argue that transforms trained using MLE on observations cor-
responding to specific classes are less likely to reduce recognition
error compared to MLE global transforms and a discriminative cri-
terion should be used to estimate the class-dependent transforms.
Further investigation of the effect of the type of the input fea-
tures and the structure used to implement the symplectic map on
recognition performance will be our main goal in future research.
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