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ABSTRACT

This paper describes the ISL large vocabulary conver-
sational telephony speech recognition system, which was
tested in NIST’s RT-03S (“Switchboard”) evaluation. We
present our experiments on improving preprocessing, acous-
tic modelling, and language modelling. The system fea-
tures phone-dependent semi-tied full covariances, semi-tied
clustering of septa-phones, clustering across phones, fea-
ture adaptive training, robust estimation of VTLN and
MLLR, as well as context-dependent interpolation of lan-
guage models. We present detailed results for each stage of
our multi-pass transcription scheme. System development
started with a 1997 SWB system, yielding a word error rate
of 35.1% on our internal 1h development set. The final sys-
tem performed at 21.8%, a 38% relative improvement. The
error rate on the RT-03 CTS evaluation set is 23.4%.

1. INTRODUCTION

Recognition of conversational telephony speech is a chal-
lenging task, with respect to both acoustic and language
modelling. Under-articulated speech causes a mismatch be-
tween pronunciation dictionary and acoustic models. Ad-
ditionally, sloppy speech makes it hard to train appropriate
language models. Furthermore, in 2003, automatic segmen-
tation was required for the first time in the HUB-5 evalua-
tion series.

We started by reviving ISL’s 1997 SWB system [1]. This
multi-pass system obtained a top rank in the 1997 evalua-
tion. Running this system as-is on the 2001 evaluation set,
we achieved an error rate of 34.8%. This system is signifi-
cantly behind the top systems in the 2001 SWB evaluation
[5], demonstrating that the ASR community achieved sub-
stantial improvements over the last years.

We used two test sets (table 1) for development pur-
poses. Dev0l is a 1h subset of Eval0l, designed to have a
similar error rate as the full set (35.1% vs. 34.8%). Tests
with automatic segmentation were performed on the “Dry-
run” data, which is a sub-set of Eval02. Unless otherwise
stated, the reported error rates are based on Dev0l. Since
several setups for different experiments were used during
system development, the stated error rates do not decrease
monotonously and the results need to be viewed with re-
spect to the corresponding base-line.

The paper is organised as follows: First, we present ex-
periments for acoustic modelling including front-end and
segmentation. Next, we describe our language models and
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the decoding strategy and present results for each system
stage. In the final section, we describe experiments to re-
duce the decoding time.

[ | subset from | segmentation |
Dev01 1h from Eval01 manual
Dry-run | 1h from Eval02 automatic

Table 1: Development sets.

2. ACOUSTIC MODELLING

Acoustic models were trained by merging three corpora:
265h of SWB and Callhome, 32h of cellphone, and 65h of
“CTRAN” SWB-2 data. The cellphone and CTRAN data
were weighted by a factor of 3 and 2, respectively. The
original ISIP training transcripts were used for the SWB
data. The training dictionary was derived from CMUdict
and on average contains nearly 2 pronunciation variants per
base-form.

Since we started a new training environment, we per-
formed several steps to clean-up the data-base. By discard-
ing all training segments containing one word only, an error
reduction from 37.1% to 36.4% was obtained. Furthermore,
we limited the segment boundaries to max. 15 frames of si-
lence only. Zero-energy frames observed in parts of some
conversations lead to extreme likelihoods, in particularly
in combination with feature space adaptation. Discarding
these frames by using a zero-crossing feature resulted in an
improvement from 33.4% to 32.8%. Additionally, segments
with poor likelihoods were removed as well.

2.1. Preprocessing

The 5min excerpts from the conversations were segmented
into smaller chunks before decoding. The segmentation
works in two phases. An initial energy-based segmenta-
tion with three categories (speech, non-speech, unsure) is
used to bootstrap GMMs for speech and non-speech. These
GMNDMs are used to re-segment the unsure parts. Finally, a
smoothing process is conducted to join adjacent chunks.

As shown in table 2, segmentation error rate and word
error rate are not necessarily correlated. The best auto-
matic segmentation is only 0.8% worse then manual seg-
mentation.
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system [ seg. error (NIST score) | WER |
manual - 41.1%
automatic 14.3% 41.9%
automatic 9.7% 43.0%

Table 2: Segmentation on Dry-run.

The front-end is based on 13 mel-filtered cepstral co-
efficients per frame, applying conversation side wide cep-
stral mean subtraction. Incorporating context information
by concatenating 11 frames gave significantly better results
than a A-based approach. The final feature vectors are
transformed by an LDA using the context dependent states
as classes and the dimension is reduced from 143 to 42.

[ front-end | WER |
A’s+AA’s+LDA 39.7%
frame stacking+LDA | 38.5%
+ CVN 37.6%

Table 3: Front-end improvements.

Our VTLN estimation procedure maximises the likeli-
hood for voiced sounds. Traditionally, warping factors were
estimated with fixed CMS/CVN which introduces inconsis-
tencies. Our revised iterative estimation of all front-end pa-
rameters computes the likelihood for a given warping factor
with the correct CMS/CVN vectors. This makes it desir-
able to use a more efficient search method than line search.
The new procedure is, therefore, based on Brent search.
The interleaved estimation yielded an improvement from
33.2% to 32.4%.

2.2. Training procedure

The training procedure is based on fixed state alignments.
In our experiment, the alignments were generated with a
small context dependent system. As shown in table 4, these
labels are significantly better than the labels generated with
the full setup’. We attribute this result to the better gener-
alisation capability. Moreover, this approach outperforms
both viterbi and forward/ backward training. Generating a
set of frame/ state alignments once and keeping it fixed over
several training iterations reduces the training time drasti-
cally compared to traditional training. This will become an
important issue once 2000h of Fisher training data become
available.

Our traditional training procedure bootstrapped the
models with the K-means algorithm. As an alternative,
we implemented an “incremental growing of Gaussians”-
procedure. Starting with one component per state, the
Gaussians will be splitted along the largest covariances. An
occupancy threshold is used to deactivate “dead” Gaus-
sians. The training consists of 7 big iterations with pa-
rameter doubling. After each big iteration, three “small”

IThe number of parameters is 7% of the number of parameters
in the full setup.

[ alignment [ WER |
Full fwd/bwd 33.1%
viterbi 33.3%
labels with full setup 33.5%
labels with small setup | 32.7%

Table 4: Forced alignments.

re-estimation steps are performed without splitting. This
strategy is particularly advantageous for the 10’000x32
setup (see table 5, where the models consist of 10’000 states
with 32 Gaussians. The final models have 288’000 Gaus-
sians due to the integrated pruning. Combining the “in-
cremental growing” strategy with fixed alignments leads to
a very time and memory efficient training, as the prepro-
cessed data can now be organised per context-dependent
HMM state. Therefore, the training can be parallelised
according to the states instead of the dialogues as usual,
drastically reducing file-10.

[ method [ 10°000x24 [ 10°000x32 |
init with k-means 33.8% 33.7%
incremental growing 33.1% 32.4%

Table 5: Training procedure.

2.3. Clustering

Context dependent models are created by an Entropy-based
clustering procedure. First, mixture weights for all poly-
phone models are trained on top of context independent
codebooks. Questions about the phonetic context and the
phone position are used to split the tree nodes. Extend-
ing the context from +2 to 43 yields a gain from 34.7% to
34.2%. The clustering is applied in two stages: in the first
stage, a tree with 10k leafs is generated for the full model
parameters. In a second stage, 50k states are grown on the
leafs of the first tree for the mixture weights only. The ex-
tended tree has 5% extra model parameters , but reduces
the word error rate to 31.8% (from 32.8%, see table 6).

acoustic models
10k CBs + 10k DSs
10k CBs + 50k DSs

# params | WER
27.2M 32.8%
28.5M 31.8%

Table 6: Two-level Clustering.

Traditional clustering grows one tree per context inde-
pendent HMM state. As an alternative, we investigated
across-phone trees [10], offering better parameter shar-
ing capabilities. This clustering procedure grows 6 trees
only (“begin”, “middle”, and “end” for vowels and con-
sonants) and implicitly modeling articulatory changes in
sloppy speech.
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[ Clustering [ dict. [ train (66h) | train (180h) |
traditional multiple 34.4% 33.4%
across phones | multiple 33.9% -
traditional single 34.1% -
across phones single 33.1% 31.6%

Table 7: Clustering across Phones. Note the behaviour
on dictionaries containing single or multiple pronunciation
variants.

2.4. Semi-tied full covariances

Semi-tied full covariances (STC) [3] attempt to reduce the
detrimental effects of diagonal covariance modelling. The
STC parameters are trained on top of the LDA transform.
Our estimation procedure estimates all parameters, e.g. di-
agonal covariances and STC transforms, simultaneously, re-
sulting in a significant memory footprint. However, the
containers for the statistics can be allocated on demand. In
combination with the parallelisation over the HMM states,
the memory footprint can be divided by the number of par-
allelised jobs. As shown in table 8, phone dependent STC
classes do not work in combination with MLLR. Therefore,
phone dependent STC classes are used only for the first,
unadapted, decoding pass.

l [ w/o MLLR [ with MLLR |

no STC 36.7% 34.1%
global STC 33.7% 32.2%
phone STC 33.4% 33.1%

Table 8: Interaction of STC with MLLR.

STC training is also applied for the test speakers us-
ing the recogniser output. The global STC classes are
re-estimated for each test speaker (in addition to MLLR
and FSA, see below) and results in a minor improvement
(26.8% — 26.6%).

2.5. Feature Space Adaptation (FSA)

Feature space adaptation is used both in training and test-
ing. The adaptive training is carried out per conversation
side on top of the LDA /STC transforms. The VTLN factors
are kept fixed during FSA re-estimation. A determinant
constraint |A| = 1 is induced during the matrix estimation
in contrast to constrained MLLR [2]. As shown in table
9, FSA gives a 1.1% improvement on top of all other nor-
malisation and adaptation techniques. In contrast to FSA,
where only one global matrix is used, MLLR makes use of
a regression tree and the number of transforms depends on
the adaptation data available.

2.6. MMIE training

The accumulation strategy for discriminative training is
based on confusion networks [4]. First, lattices are gen-
erated using an uni-gram language model (LM). A down-

[ setup [ WER |
VTLN,MLLR,STC || 28.9%
+ FSA-SAT 27.8%

Table 9: Feature Space Adaptation.

scaling of the LM scores is applied to “flatten” the word pos-
terioris. Next, lattices are converted to confusion networks.
The Forward/Backward procedure is applied to these net-
works. The word boundaries can therefore be adjusted
during training in contrast to the “phone-marked lattice”-
approach [9]. However, both accumulation procedures lead
to the same results. A weighted ML and MMIE criterion is
used to update the parameters. Only one iteration is used;
the second iteration already led to over-training on the full
setup. The discriminative training leads to an error reduc-
tion from 28.3% to 27.6% on the full setup (LDA, VTLN,
STC, FSA-SAT, MLLR, two-level clustering).

[ setup [ ML | MMIE |

small [[ 41.9% | 40.9%
full 28.3% 27.6%

Table 10: Discriminative Training.

3. LANGUAGE MODELLING

The search vocabulary contains 41k base-forms and 96k
pronunciations selected from SWB, BN, and CNN corpora.
The pronunciations were either taken from CMUdict or gen-
erated by Festival. Pronunciation probabilities were treated
as penalties during decoding and as real probabilities for
confusion network generation. The frequencies were gener-
ated from training labels. Three separate LMs were inter-
polated, using predecessor-dependant weights. As shown in
table 11, the CNN LM did not improve the performance.
Thus, the combined LM consists of 3gram SWB + 5gram
class SWB + 4gram BN. Apart from the first, unadapted,
pass, all passes used the full interpolated LM during decod-
ing and lattice generation.

3gram SWDB 31.4%
+ bgram class SWB | 31.0%
+ 4gram BN 30.3%
+ 4gram CNN 30.5%

Table 11: Language Modelling, context dependent interpo-
lation.

4. DECODING

The search engine is a one-pass decoder based on linguistic
polymorphisms [6]. The full LM history is conserved in lin-
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Pass 0 35.0% | Tree-150, MMIE, STC-50, smallLM

Pass 1/2 || 28.5% | Tree-150, ML , STC-1, VILN, MLLR, bigLM

Pass 3/4 || 27.2% | Tree-150, MMIE, STC-1, VILN, MLLR, FSA-SAT, bigLM

Pass 5 26.6% | Tree-6, ML, STC-1, FSA-SAT, bigLM, SPDict

Pass 6 26.2% | Tree-150, MMIE, STC-1, VILN, MLLR, FSA-SAT, bigLM

Pass 7 26.4% | Tree-6, cross-adaptation

Pass 8 25.4% | Tree-150, cross-adaptation

Pass 9 24.7%

System Combination

Table 12: Decoding Passes (Tree-150= clustering per phone state, Tree-6=clustering across phones, STC-50= phone depen-
dent classes, STC-1= global STC), results on Dry-run (automatic segmentation).

guistic instances of search nodes. Subgraph dominance is
therefore exploited implicitely. The search network is based
on a general graph structure, sharing roots and tails. Iso-
morphic subgraphs are merged via an iterative procedure
reducing redundancies. Lattice nodes are created from the
active search space by removing the LM information. Links
are created during and after decoding. This allows to trans-
fer as much information as possible from the active search
space into the lattice.

The decoding passes are summarised in table 12. Pass 0
used phone dependent STC classes and the 3gram SWB LM
only. Lattice based MLLR [8] is used to generate adapted
models for the next pass. Passes 7 and 8 are used for
cross-adaptation between the Tree-150 (traditional cluster-
ing) and Tree-6 (clustering across phones) setup. The effect
of cross-adaption can be seen by comparing passes 6 and 8
which use the same models. System combination uses a
mixture of Rover and confusion network combination. We
fuse lattices from different stages into one single confusion
network. Owverall, processing of the test data took about
190 times real-time on a 2.4GHz Pentium4 single CPU.

Since fast transcription systems receive increasing in-
terest, we investigated the trade-off between speed and ac-
curacy on the final, adapted, decoding pass. The final de-
coding pass with the adapted models runs in 12 times real-
time with open search beams and gives 24.2% WER on the
Eval03 test set. As shown in table 13, the decoding process
can operate in real time with a moderate increase of search
errors if appropriate beam settings are used.

Pruning parameter RTF | WER
beam= 2.4 (eval mode) 12.0 | 24.2
beam= 1.5 4.7 24.6
beam= 1.1 1.4 26.0
+ transN=35 1.0 26.1
+ delayed LM interpolation 0.9 26.1

Table 13: Single adapted pass, RTF on P4 2.4Ghz, WER
on Eval03.

5. SUMMARY

We described the development of ISL’s 2003 transcrip-
tion system for conversational telephony speech. The sys-

tem achieved an error rate of 23.4% on the official RT-03
(Eval03) CTS test set. Starting last year with a WER
of 35.1% on our dev0l development set, improvements of
acoustic and language modelling led to a WER of 21.8%.

Part of this work has been funded by the European
Union as IST project No. IST-2000-28323 (FAME).
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