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ABSTRACT

The automatic recognition of Arabic dialectal speech is a
challenging task since Arabic dialects are essentially spo-
ken varieties, for which only sparse resources (transcrip-
tions and standardized acoustic data) are available to date.
In this paper we describe the use of acoustic data from Mod-
ern Standard Arabic (MSA) to improve the recognition of
Egyptian Conversational Arabic (ECA). The cross-dialectal
use of data is complicated by the fact that MSA is written
without short vowels and other diacritics and thus has in-
complete phonetic information. This problem is addressed
by automatically vowelizing MSA data before combining
it with ECA data. We described the vowelization procedure
as well as speech recognition experiments and show that our
technique yields improvements over our baseline system.

1. INTRODUCTION

Recent research in large-vocabulary conversational speech
recognition has expanded to accommodate a wider range of
languages (e.g. Mandarin and Arabic) in addition to more
“mainstream” languages like English or Spanish. Often these
new languages present problems that are not encountered
in mainstream languages, such as extreme dialectal varia-
tion and non-standardized speech representations. Arabic
in particular is characterized by its multitude of dialects.
While one variety, Modern Standard Arabic (MSA) is used
in writing, TV and radio broadcasts and for formal com-
munication, all informal communication is typically carried
out in one of the regional dialects of Arabic. The linguis-
tic differences between different dialects, and between di-
alects and MSA, are considerable and affect pronunciation,
phonology, morphology, syntax, and the lexicon. Moreover,
the regional dialects of Arabic are spoken languages; very
little written dialectal material exists. This is a serious prob-
lem for the automatic recognition of Arabic dialectal speech
since large-vocabulary recognizers rely on large amounts of
training material. Previous attempts at utilizing MSA data
to improve language modeling for Egyptian Colloquial Ara-
bic (ECA) [1] were largely unsuccessful and demonstrated
that the two varieties do indeed behave like two different
languages.

In this paper we attempt to use MSA data to improve not the
language model but the acoustic models in a large-vocabulary
conversational speech recognizer for ECA. Acoustic dif-
ferences between these two varieties are smaller than the
differences at the language level, and since only a small
amount of acoustic data is currently available for ECA, acous-
tic models might benefit from a larger amount of similar
data that provides more training instances of context-depen-
dent phones. Moreover, the difference between dialectal
and MSA speech is not necessarily clear-cut; it is a con-
tinuum, with speakers varying between the two ends of the
continuum depending on the situational context. Cross-dia-
lectal data sharing may be helpful in modeling this type of
mixed speech.
Our approach is similar to sharing acoustic training data
across different languages. Previous studies in this field [2,
3] have mainly addressed the problem of building a recogni-
tion system for a new target language given several source
languages with sufficient acoustic data. Data sharing was
implemented through the use of multilingual acoustic mod-
els trained on pooled data from the source languages. Ex-
tensive experimentswere reported in [3], where cross-langu-
age transfer of acoustic models (without any data from the
target language) was compared to multilingual training fol-
lowed by adaptation, bootstrapping and retraining, and to
training on a large set of data from the target language.
It was found that multilingual training plus adaptation per-
formed only slightly worse than training on the target lan-
guage.
In contrast to these studies, Arabic presents an additional
problem: whereas ECA is available in a romanized form
with almost phonetic spelling, MSA is usually written with-
out short vowels. Thus our goal is to combine two different
data sets for acoustic modeling, one of which has incom-
plete phonetic information. This is done by automatically
vowelizing the MSA data before combining it with the ECA
data.
The following describes the linguistic differences between
MSA and ECA in greater detail. Section 3 provides a de-
scription of the data used for this study. In Section 4 the
process of automatic vowelization of the MSA data is ex-
plained. Section 5 describes the baseline systems and ex-
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periments and Section 6 discusses the results.

2. LINGUISTIC DIFFERENCES BETWEEN MSA
AND ECA

MSA has a system of 28 phones, which largely overlaps
with the phone system of ECA. Differences in the phone
inventory include the substitution of ECA [g], [d] and [t]
for MSA /

�
/, /ð/ and / � /, respectively, modification of /a � /

and /au/ in MSA to [ � ] and [o] in ECA, and the replacement
of the uvular stop /q/ in MCA by glottal stop [ � ] in ECA.
A further pronunciation differences is the insertion of a so-
called linking vowel into consonant clusters spanning word
boundaries in ECA but not in MSA. Morphological differ-
ences are e.g. the lack of case endings on nouns in ECA;
and different inflectional morphs. All of these factors in-
fluence the acoustic structure (triphone statistics) of the two
varieties; another important factor is linguistic usage: MSA
is typically used for formal communication and in the me-
dia. Existing corpora of MSA data are mostly broadcast
news corpora, such that the range of topics influences the
lexical choice and thereby the triphone structure. However,
many of triphones can still be expected to be shared be-
tween the two varieties. Whereas ECA is a spoken variety
and is almost never written, MSA is the language of writ-
ing. However, it is mostly written without diacritics (short
vowel markers and special markers for consonant doubling
etc.), consisting of consonant and long vowels only. In or-
der to be able to use an MSA text for ASR it either needs to
be diacritized, or the recognizer must use grapheme-based
models [4]. Since our goal is to combine MSA data with ro-
manized ECA data which does include vowel information,
automatic diacritization of the MSA data was a prerequisite
for our experiments.

3. DATA

We used two different corpora for this study: the LDC Call-
Home (CH) corpus of Egyptian Colloquial Arabic and the
FBIS corpus of MSA. The CallHome corpus consists of
telephone conversations between native speakers of Egyp-
tian Arabic. The training set used for the experiments de-
scribed in this paper consists of the “train”, “h5_new” and
“eval96” subsets and contains approximately 200K words.
The FBIS corpus is a collection of radio news casts from
various radio stations in the Arabic speaking world (Cairo,
Damascus, Baghdad) totalling approximately 40 hrs of speech
(roughly 240K words). The CallHome corpus was tran-
scribed in two different ways: (a) using standard Arabic
script, and (b) using a romanization scheme developed at
LDC and distributed with the corpus. The romanized tran-
scription includes information about short vowels and other
diacrictics. The transcription of the FBIS corpus was done

LOOK-UP WORD: qbl
SOLUTION 1: (qabola) qabola/PREP

(GLOSS): + before +
SOLUTION 2: (qaboli) qaboli/PREP

(GLOSS): + before +
SOLUTION 3: (qabolu) qabolu/ADV

(GLOSS): + before/prior +
SOLUTION 4:(qibal) qibal/NOUN

(GLOSS): + (on the) part of +
SOLUTION 5:(qabila)

qabil/VERB_PERFECT+a/PVSUFF_SUBJ:3MS
(GLOSS): + accept/receive/approve + he/it � verb �

SOLUTION 6: (qab ala)
qab al/VERB_PERFECT+a/PVSUFF_SUBJ:3MS
(GLOSS): + kiss + he/it � verb �

Fig. 1. Sample output of Buckwalter stemmer showing the
possible diacritizations and morphological analyses of the
script form � 	 � . Lower-case � stands for sukuun (lack of
vowel).

in Arabic script only and does not contain any diacritic in-
formation. The state-of-the-art word error rate obtained on
the CH eval03 set in the 2003 EARS evaluations was 37.5%;
the authors’ system obtained 39.7%.

4. AUTOMATIC DIACRITIZATION

Since the FBIS transcriptions did not contain diacritics we
applied the following automatic diacritization procedure:

1. Generate all possible diacritized variants for each word,
along with their morphological analyses.

2. Train an unsupervised tagger to assign probabilities
to sequences of morphological tags.

3. Use the trained tagger to assign probabilities to all
possible diacritizations for a given utterance.

4. Use the weighted diacritizations as pronunciation net-
works and use trained acoustic models from a differ-
ent corpus to find the most likely diacritization.

For the first step we used the Buckwalter stemmer, which
is an Arabic morphological analysis tool available from the
LDC. The stemmer produces all morphological analyses of
a given Arabic script form; as a by-product it also outputs
the concomitant diacritized word forms. An example of the
output is shown in Figure 1. The next step was to train
an unsupervised tagger on the output to obtain tag n-gram
probabilities. The number of different morphological tags
generated by applying the stemmer to the FBIS text was
763, which was conflated into smaller set of 392 consistent
with the tag set used in the LDC Arabic TreeBank corpus.
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This set was also developed based on the Buckwalter mor-
phological analysis and can be matched to the FBIS tags by
finding the longest common substring. We adopted a stan-
dard trigram tagging model:

� � � � � 
 
 
 � � � � � � � 
 
 
 � � � � �
�

�
� � � � � � � � � � � � � � � � � � �  � � � � # �

(1)
Since the true tag assignment was not known, only the set
of possible tags for each word were available during train-
ing. The probabilities for

� � � � � � � �
and for the tag sequence

model
� � � � � � � �  � � � � # �

were updated iteratively using the
Expectation-Maximization algorithm. We used the graph-
ical modeling toolkit GMTK [5] to train the tagger. The
trained tagger was then used to assign probabilities to all
possible sequences of three successive tags and their asso-
ciated diacritizations, for all utterances in the FBIS corpus.
The resulting word networks were used in combination with
the acoustic models trained on CallHome to find the most
likely word sequence. Since the Buckwalter stemmer does
not produce case endings for nouns, the word forms ob-
tained by adding case endings were included as variants in
the pronunciation dictionary used by the aligner. In some
cases (1.5%) the Buckwalter stemmer was not able to pro-
duce an analysis of the word form due to misspellings or
novel words. These were mapped to a generic reject model.
10% of the FBIS data was discarded since no alignment
could be found. The remaining 90% were used for our ex-
periments. Since a manual diacritization was not available
as a reference standard we cannot give an accurate assess-
ment of the diacritization error rate. However, listening to
a small set of audio files and comparing the corresponding
automatically diacritized word strings yielded an estimated
diacritization accuracy of approximately 95%.

5. BASELINE SYSTEMS AND EXPERIMENTS

One motivation for using cross-dialectal data was the as-
sumption that infrequent triphones in the CallHome corpus
might have more training samples in the larger MSA cor-
pus. In order to verify this assumption we collected tri-
phone statistics on the diacritized MSA corpus and com-
pared them to the CallHome triphone statistics. Since we
did not use cross-word triphones in our recognizer, only
within-word triphones were considered. The total number
of unique triphones in the CallHome training set is 8780
(computed on Arabic words only, excluding foreign words,
hesitations, etc.), compared to 6211 unique triphones in the
FBIS corpus. 40% of the CallHome triphones also occur in
the FBIS corpus and can thus potentially profit from addi-
tional training data. The overall number of training samples
for these triphones in the FBIS corpus is 2.5 times larger
than in the CallHome corpus alone. About 50% percent of

the triphones have more occurrences in FBIS than in Call-
Home, 14% have more samples in CallHome than FBIS,
and 36% have an approximately equal number of samples
( % ' ) 50) in both corpora. We computed the same statistics
for the triphones in the development set and obtained simi-
lar results: of the 4167 unique triphones in the development
set, 2141 occur in both training corpora and have in total
about twice as many training samples in FBIS as in Call-
Home. The FBIS corpus also contains additional triphones
which might occur in the CallHome development and test
sets but not in the training set - however, since the recogni-
tion lexicon only contains the words in the training set, we
currently do not have a way of utilizing these.

5.1. Baseline Systems

We trained two different systems, one trained only on Call-
Home data (CH-only), and one trained on pooled data from
both corpora (CH+FBIS). Both systems used the same front
end and modeling techniques. The front-end consisted of
39 mel-frequency cepstral coefficients (13 base coefficients
+ first and second differences). Mean and variance as well
as VTL normalizationwere performed per conversation side
for CH and per speaker cluster (obtained automatically) for
FBIS. We trained continuous-density, genonic hidden Mar-
kov models (HMMs) [6], with 128 gaussians per genone
(only non-crossword models). For the CH-only system we
used 250 genones, while for the CH+FBIS trained system
we used 300, in order to take advantage of the extra train-
ing data. To obtain the CH+FBIS models we first trained
using the whole data with weight 2 for CH and 1 for FBIS.
Then we adapted the final models on the CH only data us-
ing MAP adaptation [7]. Recognition was done by SRI’s
DECIPHERTM engine in a multipass approach: in the first
pass, phone-loop adaptationwith two MLLR transforms was
applied. A recognition lexicon with 18K words and a bi-
gram language model were used to generate the first pass
hypothesis. In the second pass the acoustic models were
adapted using constrained MLLR (with 6 transformations)
based on the previous hypotheses. Bigram lattices were
generated which were then expanded using a 3gram lan-
guage model. Finally Nbest lists were generated using the
adapted models and the 3gram lattices. The final best hy-
pothesis was found using N-best ROVER. The CH+FBIS
trained system before MAP adaptation was actually about
1% worse than the CH-only system, which suggests that
we may have used too high a weight for the FBIS data in
the combination. After MAP the two systems become very
close in performance. Nevertheless we will demonstrate in
the next paragraph that the two systems were actually differ-
ent enough to help in combination. It should also be noted
here that, in contrast to the evaluation system mentioned
in Section 3 the present system was only a single front-
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System dev96 eval03

CH-only 57.3 42.7
CH+FBIS 57.2 43.0

Table 1. Baseline word error rates (%) for first-pass systems
trained on CallHome only and pooled CH+FBIS data.

System dev96 eval03

CH-only 56.1 42.7
CH+FBIS 56.3 42.6
combined 55.3 41.7

Table 2. Word error rates (%) obtained after the final recog-
nition pass and with ROVER combination.

end (instead of a combination of systems based on differ-
ent front ends) and did not include HLDA, cross-word tri-
phones, MMIE training or a more complex language model
that we used for the evaluation. The lack of these features
resulted in a higher error rate but our goal here was to ex-
plore exclusively the effect of the extra training data.

5.2. Combination Experiments

We wanted to explore the assumption that even though the
FBIS data did not help improving the models, they actu-
ally resulted in a sufficiently different system to be able to
help in combination with the CH-only baseline. Both mod-
els (MLLR adapted) were used as described above in the
third pass of our system, to obtain N-best hypothesis from
the trigram lattices. We combined these results using a 2-
way N-best ROVER, whose parameters were optimized on
the dev96 set. The results are shown in Table 2. We ob-
tained an 0.8% absolute improvement on the development
set and a 1.0% improvement on the evaluation set; the latter
is significant at the 0.1 level using a difference of propor-
tions significance test. Although the improvement seems
modest, it is higher than that obtained by simply combining
systems based on different front-ends (0.5% absolute on the
eval03 set), and it amounts to one third of the combined im-
provement gained by different front ends, a more complex
language model, MMIE training and HLDA.

6. DISCUSSION

This study represents - to our knowledge - the first attempt
at cross-dialectal data sharing for Arabic speech recogni-
tion. We have shown how the problem of incomplete pho-
netic information in the MSA data can be circumvented by
automatic diacritization using a combination of syntactic,
morphological and acoustic information sources. One likely

reason why our experiments did not show more gain may be
that the FBIS corpus is acoustically very different from the
CallHome corpus, essentially adding noise to the training
data. Some acoustic normalization procedure in addition
to mean and variance normalization might need to be per-
formed. Furthermore, different weighting schemes for the
initial training of the CH+FBIS system might prove bene-
ficial. Furthermore, a much larger data set of MSA might
have to be added before stronger effects can be observed:
for instance, a related study on using multilingual acous-
tic data for cross-language adaptation [2] showed that 72hrs
of English data added to 1h of Czech training data only re-
sulted in a 1% absolute reduction in error rate (for a baseline
for 30% WER) of the Czech ASR system trained on the na-
tive data only. Future work will include different adaptation
techniques as well as different weighting schemes for dif-
ferent dialect regions represented in the FBIS corpus.
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