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ABSTRACT

We showed in previous work that weighted finite-state transduc-
ers provide a common representation for many components of
a speech recognition system and described general algorithms
for combining these representations to build a single optimized
and compact transducer integrating all these components, directly
mapping from HMM states to words. This approach works well
for certain well-controlled input transducers, but presents some
problems related to the efficiency of composition and the appli-
cability of determinization and weight-pushing with more gen-
eral transducers. We generalize our prior construction of the in-
tegrated speech recognition transducer to work with an arbitrary
number of component transducers and, to a large extent, release
the constraints imposed to the type of input transducers by provid-
ing more general solutions to these problems. This generalization
allowed us to deal with cases where our prior optimization did
not apply. Our experiments in the AT&T HMIHY 0300 task and
an AT&T VoiceTone task show the efficiency of our generalized
optimization technique. We report a 1.6 recognition speed-up in
the HMIHY 0300 task, 1.8 speed-up in a VoiceTone task using a
word-based language model, and 1.7 using a class-based model.

1. MOTIVATION

In previous work, we showed that weighted finite-state transduc-
ers provide a common and natural representation for many com-
ponents of a speech recognition system, e.g., HMMs, context-
dependency, pronunciation dictionaries, and language models [8].
We also described general algorithms for combining these repre-
sentations flexibly and efficiently and showed that they can be used
to build a single optimized transducer that integrates these compo-
nents, directly mapping from HMM states to words [9, 10]. In
this method, weighted transducer composition is used to combine
the component transducers, while determinization, minimization
and weight-pushing optimize the result in time and space. The re-
sultant transducer has a standardized representation, unique up to
state renumbering.

This approach works well for certain well-controlled input
transducers, but presents some problems with more general trans-
ducers. These problems are related to composition, determiniza-
tion, and weight-pushing.

Composition can use unacceptable amounts of time and space
when there are significant delays in matching due to ε-transitions.
In simple cases, this can be avoided by a careful construction of the
component transducers. In practice, inexperienced users are often
not fully aware of this. For example, they may place the output
labels in the lexicon transducer L at the ends of words rather than
at the beginning, which can significantly slow down composition.
For more complex transducers, trying to manually place the input
and output labels for the best effect becomes difficult.

Not all transducers are determinizable. The lexicon trans-
ducer, for example, is not determinizable if it contains homo-
phones. In our prior construction, we added disambiguation sym-
bols at word ends as needed to solve this problem. For more gen-
eral transducer inputs, this is insufficient. A related problem is that
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the prior construction assumed that only L was non-determinizable
in our composition chain while we might wish to use other infor-
mation sources represented by non-determinizable transducers.

Not all transducers can be pushed over the (log) probability
semiring, in particular because not all transducers can have their
weights redistributed along their paths so that they form a stochas-
tic distribution. A trivial example is a self-loop with weight greater
than one. In practice, there are several common causes of non-
stochastic knowledge sources: unweighted word grammars, e.g.,
hand-crafted grammars; silence models with free cost loops; un-
weighted or unnormalized multiple pronunciations; compact ap-
proximate automata representation of n-gram models; and ad hoc
word or phone insertion penalties.

One way to deal with these problems would be to allow only
very limited kinds and number of knowledge sources and precisely
stipulate how each is constructed as a transducer prior to their com-
bination and optimization. But much of the inherent generality of
weighted transducer algorithms would be lost by such restrictions.
Instead, we consider here how to generalize our constructions so
that as wide a range of component transducers as possible can be
used successfully as inputs. This generalization will permit the
more efficient use of current models and of hopefully yet more
innovative future models.

We present our generalized construction technique in detail in
section 4 and show how,within the general framework considered,
it provides solutions to each of the problems just mentioned. This
culminates in the description of dmake, a utility from the AT&T
Decoder Library (DCD Library), that takes a very general set of
transducer inputs and constructs an optimized recognition trans-
ducer from them (Section 5). We also present in that Section the
results of experiments in several spoken-dialog applications tasks
that show very substantial recognition speed-ups compared to the
previous optimizations (that were limited due to the kinds of issues
mentioned above). We also demonstrate the efficiency of the con-
struction of recognition transducers from component transducers.

We begin with some preliminary definitions of weighted trans-
ducers needed in the remainder of the paper (Section 2) and a brief
description of some basic algorithms needed in our generalized
construction (Section 3) that are also of independent interest.

2. PRELIMINARIES

Weighted automata are automata in which the transitions carry in
addition to the usual alphabet symbols some weights elements of
a semiring [5]. A semiring is a ring that may lack negation. It
has two associative operations ⊕ and ⊗ with identity elements
0 and 1. ⊗ distributes over ⊕ and 0 is an annihilator. The
weights used in speech recognition often represent probabilities.
The appropriate semiring to use is then the probability semiring
(R, +, ·, 0, 1). For numerical stability, implementations often re-
place probabilities with log probabilities. The appropriate semir-
ing to use is then the log semiring: (R∪{∞},⊕l, +,∞, 0), with:
∀a, b ∈ R ∪ {∞}, a ⊕l b = − log(exp(−a) + exp(−b)), where
by convention exp(−∞) = 0, and − log(0) = ∞. The log semir-
ing is the image by log of the semiring (R, +, ·, 0, 1). When log
probabilities are used and a Viterbi approximation is assumed, ⊕l

is replaced by min and the appropriate semiring is the tropical
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Fig. 1. Input ε-normalization in the tropical semiring. (a)
Weighted transducer T1. (b) Weighted transducer T2 equivalent
to T1 output of the ε-normalization algorithm.

semiring (R+ ∪ {∞}, min, +,∞, 0).
A weighted transducer T = (Σ, ∆, Q, I, F, E, λ, ρ) over K

is a 7-tuple where Σ is a finite input alphabet, ∆ is a finite output
alphabet, Q is a finite set of states, I ⊆ Q the set of initial states,
F ⊆ Q the set of final states, E ⊆ Q × Σ × ∆ × K × Q a finite
set of transitions, λ : I → K the initial weight function mapping
I to K, and ρ : F → K the final weight function mapping F to
K [12, 5]. Weighted automata can be defined in a similar way by
simply omitting the output labels. A path π = e1 · · · ek in A is an
element of E∗ with consecutive transitions. A successful path is a
path from an initial state to a final state.

3. BASIC ALGORITHMS

This section briefly describes several basic algorithms needed for
our generalized construction of an integrated recognition trans-
ducer: input ε-normalization and synchronization are used in our
optimization to normalize the positions of input and output labels
of acyclic transducers, and a symbol insertion based on weighted
transducer determinization used to ensure the determinizability of
the closure of an acyclic transducer.

3.1. Input ε-Normalization

Input ε-normalization [6] is an algorithm used in our optimizations
of the acyclic component transducers. It consists of normalizing
the input transducer T1 in the following way. The output trans-
ducer T2 is equivalent to T1, it has no ε-transitions, and along any
of its successful paths, no transition with input label different from
ε is preceded with a transition with input label ε. Figures 1(a)-
(b) illustrate the application of this algorithm to the transducer of
Figure 1(a).

3.2. Synchronization

There exists a general algorithm for the synchronization of
weighted transducers [7]. The objective of the algorithm is to syn-
chronize, to the extent that it is possible, the consumption of non-ε
symbols by the input and output tapes of a weighted transducer.
Figures 2(a)-(b) illustrate the algorithm and its application to the
transducer of Figure 2(a). Each state of the resulting transducer T ′

corresponds to a triplet (q, x, y) where q is a state of the original
machine T and where x and y are residual input and output strings
used to create synchronized outgoing transitions.

3.3. Determinization with Symbol Insertion

Determinization can be applied to any acyclic transducer T to cre-
ate an equivalent transducer T ′ that is finitely subsequential, i.e.,
a transducer with deterministic input and a finite number of string
outputs at each final state. The algorithm can be augmented to in-
sert a new and distinct input symbol corresponding to each of the
final output strings at final states. The alphabet of the resulting
transducer T ′′ has a finite number of additional auxiliary symbols.
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Fig. 2. (a) Weighted transducer T1 over the tropical semiring. (b)
Equivalent synchronized weighted transducer T2. (c) Synchro-
nized weighted transducer T3 equivalent to T1 and T2 obtained
by ε-removal from T2.

T ′′ is unambiguous and the input label of each of its successful
paths ends with an auxiliary symbol. It is not hard to show that
the closure of T ′′ is determinizable. Figures 3(c)-(d) illustrate the
application of the algorithm to the transducer of Figure 3(c).

4. GENERALIZED CONSTRUCTION

Our generalized construction applies to an arbitrary number n
of transducers Tk, k = 1, . . . , n, representing the information
sources used by the system in the order of the numbering of the
transducers. The essential scheme is similar to our prior construc-
tion [8]. Composition is applied right-to-left to combine informa-
tion sources, with each composition step being followed by de-
terminization to reduce redundancy. The resulting optimized inte-
grated transducer N is thus constructed in the following way:

N = πε(det(T̃n ◦ det(T̃n−1 ◦ · · · det(T̃2 ◦ T̃1) · · · )))

where the tilde operator indicates that disambiguation symbols
are inserted so the transducer admits determinization or passes
through the disambiguation symbols of prior stages, det stands for
the weighted determinization algorithm applied in the log semir-
ing and πε replaces the disambiguation symbols with ε transitions.
Additionally, weighted minimization can be used to reduce the size
of all (encoded) intermediate and final transducers.

Before applying the general construction just outlined, the
component transducers Tk must be optimized. Ideally, arbitrary
input transducers Tk could be considered. In fact, it helps to ex-
ploit the prior knowledge about these transducers to apply the ap-
propriate optimizations in the most efficient way. As such, we
distinguish three types of component transducers: acyclic, bi-
determinizable, and arbitrary and describe in detail the optimiza-
tion algorithms applied to each type.

No optimization algorithms are applied to arbitrary compo-
nent transducers. We assume that the user ensured that these trans-
ducers are build adequately for composition, and that the resulting
transducer after composition is determinizable. Bi-determinizable
component transducers are simply determinized on their output
side. No specific assumption is made about an acyclic compo-
nent transducer, e.g., the relative position of the input and output
labels, the weights, or topology of the machine. To deal with such
arbitrary transducers, we use several algorithms to optimize and
suitably disambiguate them, in particular the basic algorithms pre-
sented in the previous section. The exact sequence of algorithms
applied are: input ε-normalization, determinization with symbol
insertion — to ensure determinizability after closure, synchroniza-
tion — to optimize the positions of the output labels for compo-
sition, ε-removal, then determinization, minimization and weight
pushing applied to the transducer encoded as an acceptor (each
pair of input and output labels is treated as one symbol), closure,
and reverse ε-removal — to create a compact representation of the
transducer. This construction is illustrated in Figure 3. The next
sections describe our solutions to the problems previously men-
tioned.
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Fig. 3. (a) Acyclic weighted transducer T1 over the log semir-
ing. (b) Weighted transducer T2 obtained from T1 after input ε-
normalization. (c) Weighted transducer T3 obtained from T2 by
determinization with symbol insertion. (d) Weighted transducer T4

obtained from T3 by synchronization and ε-removal. (e) Weighted
transducer T5 obtained by applying to the transducer T4 encoded
as an acceptor (each pair of input and output labels is treated as
one symbol) determinization, minimization and weight pushing.

4.1. Solutions to Composition- and Determinization-Related
Problems

Each component transducer in the composition chain is deter-
minizable: bi-determinizable components are determinizable by
definition and the processing of acyclic transducers presented in
the previous section ensure that their closure is determinizable.
Hence, we need to ensure (1) that the results of the intermedi-
ary compositions are indeed determinizable, and (2) that the new
input symbols that have been inserted in the acyclic component
transducers do no disrupt the composition chain. To solve both is-
sues, each transducer in the composition chain is modified to map
each symbol out of its output alphabet to a new input symbol. This
can be done by simulating at every state loops mapping out-of-
alphabet output symbols to new input symbols. Note that we have
also presented elsewhere a general technique for dealing with non-
determinizable transducers [1].

4.2. Solutions to Weight-Pushing-Related Problems

4.2.1. Silence modeling

Silence tokens are typically not modeled within language models.
They are added after the fact, most commonly as free cost loops at
various states in the automata representation of the model, such as
the initial, final, and unigram states. This makes the model non-
stochastic.

One solution consists of force-aligning the training transcripts
to the training audio, which produces silence tokens in the tran-
script at the points that best align the transcript to the audio. The
resulting annotation can be used to explicitly include such tokens
in the language model. With that approach, silences are treated just
like other words, their probabilities are conditioned by previous
words and they condition the probabilities of the words that fol-
low. Hand-crafted grammars, multiple pronunciations, and hand-
crafted silence models all admit to this solution. However, there
are several problems with this approach. First, it requires a forced
alignment to be run for every model that is built, which may or
may not be possible. More importantly, silences are not distributed
like words, and treating them as such can disrupt valid lexical de-
pendencies by placing silence tokens, which now participate in the
Markov chain, between words.

Non-stochasticity arises because words can be variously re-
alized, i.e. each word can be followed by zero or more silence
tokens. To make the model stochastic, the probability mass asso-

0 1w:w/0
ε:ε/0.223

ε:<silence>/1.609

Fig. 4. A silence class transducer

ciated with the word must be shared among these sequences. That
is, there is a set (or class) of sequences, each of which is a possi-
ble realization of the word in the utterance. This suggests a class-
based method to allow for the occurrences of silence tokens. Class-
based language models can be obtained by composing a language
model G defined on classes with a weighted transducer T mapping
classes to their members and projecting the result G◦T on the out-
put [3]. In the current case, the input label of each successful path
π ∈ T will be wεk+1 and the output label w〈silence〉kε for some
k ≥ 0. If the class transducer T is pushable, and the language
model G over classes is stochastic, the result is pushable.

Figure 4 shows one such weighted transducer over the log
semiring, with a looping silence transition with probability p =
0.2, and with probability 1−p of ending the silence sequence. Our
general class-based approach allows for more complex silence se-
quence modeling, but for the current approach we adopted a trans-
ducer with the above structure, and a single p for silences, inde-
pendent of w. This results in a model that is similar to an approach
for filled pauses advocated by [11]. The probability p can be esti-
mated from a forced alignment or empirically optimized.

4.2.2. Other Sources of Non-Stochasticity

This leaves two non-stochastic knowledge source types to discuss:
the compact, approximate automata representation and word or
other insertion penalties. n-gram language models can be com-
pactly encoded as finite automata by introducing backoff states that
are visited by ε-transitions carrying the backoff weights [3]. Since
these ε-transitions are taken freely instead of only when a match at
the higher-level n-gram fails, this approximation introduces excess
probability mass into the model due to multiple ways of matching.
(Positive) insertion penalties, on the other hand, reduce probabil-
ity mass. Since it is excess probability mass on cycles that makes
automata unpushable, it is the n-gram representation that presents
the problem here. There are several solutions: (1) the integrated
recognition transducer can be ε-removed and determinized, (2) the
insertion penalties can be chosen large enough to compensate for
the n-gram approximation, or (3) the recognition transducer can be
built without explicitly pushing it but instead constructing it nearly
pushed by using log semiring operations (esp. determinization)
throughout. The first gives the best results in recognition time, but
can result in large transducer size increases (10x is typical). The
second is how we built our previously published DARPA NAB and
BN tasks. The third method is, in practice, nearly as good as the
first, but applicable even when the task’s insertion penalties, opti-
mized for accuracy, are small.

5. EXPERIMENTAL RESULTS

The construction algorithm described has been implemented and
incorporated in the DCD Library [2]. In particular, the command-
line utility dmake can be used to build optimized transducers. For
instance, the following command can be used to build an opti-
mized integrated recognition transducer hclg.fsm mapping se-
quences of HMM states to word sequences from a language model
g.fsm, a lexicon transducer l.fsm, a context-dependency trans-
ducer c.fsm, and the HMM state-level transducer h.fsm:

dmake -a h.fsm -b c.fsm -a l.fsm -b g.fsm >hclg.fsm

The -b flag declares the arguments c.fsm and g.fsm to be bi-
determinizable, and the -a flag indicates that h.fsm and l.fsm
are acyclic and need to be disambiguated, closed and made de-
terminizable as previously described. dmake can be used simi-
larly with class-based language models. The following command
constructs an optimized integrated transducer with a class-based
language model:

dmake -ah.fsm -bc.fsm -al.fsm -pa tc.fsm -bgc.fsm>hclg.fsm
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Fig. 5. Comparison of different optimization methods in (a) the 4,600-word vocabulary HMIHY 0300 task and in a 5,400-word vocabulary
task of the AT&T VoiceTone project with (b) a word-based language model and (c) a class-based language model.

where tc.fsm is an acyclic weighted transducer mapping word
sequences to classes and gc.fsm a language model defined on
classes. The -p flags indicates that the result of the composition
of tc.fsm and gc.fsm must be projected on the input before
composition with c.fsm.

We used the dmake utility to build optimized integrated trans-
ducers for two large-vocabulary speech recognition tasks, HMIHY
0300, and a AT&T VoiceTone spoken-dialog task. The tasks
share the same acoustic model consisting of 9,219 distinct HMM
states each associated to a four-Gaussian mixture model, and the
same triphonic context-dependency model with 2,641 states and
551,969 transitions. The language models were trigram Katz
backoff models shrunk with a threshold of 0 using the method
of Seymore-Rosenfeld [13], built with the utilities of the GRM
Library [4]. All our recognition experiments were done using
drecog, a general-purpose one-pass Viterbi decoder [2], on a
single processor of an Intel Pentium III 1GHz linux cluster with
256KB of cache and 2GB of memory.

Figure 5(a) gives recognition accuracy as a function of recog-
nition time for the 4,600-word vocabulary HMIHY 0300 task. The
accuracy achieved at .6 times real-time by the transducer optimized
at the lexicon level is achieved at .36 times real-time by the op-
timized transducer at the HMM-state level with the new silence
model described in section 4.2, the probability mass reserved for
the silences at every state of the language model being 39%. This
represents a speed-up of 1.6. The use of the silence model also
leads to an asymptotic improvement of the word accuracy by 1.5%
absolute value.

The results obtained in a 5,400-word vocabulary task of an
AT&T VoiceTone task are reported in Figure 5(b) when using
word-based language model is used, and in Figure 5(c) when a
class-based model is used. In the case of a word-based language
model, the accuracy achieved at .4 times real time by the trans-
ducer optimized at the lexicon level is achieved at .22 times real-
time by the optimized transducer at the HMM-state level with the
new silence model, that is 1.8 times faster. In the case of a class-
based models, the accuracy achieved at .48 times real time by the
transducer optimized at the lexicon level is achieved at .28 times
real-time by the optimized transducer at the HMM-state level with
the new silence model, that is 1.7 times faster. In both cases, the
probability mass reserved for the silences at every state of the lan-
guage model is 70%. The asymptotic improvement of the accuracy
due to the use of the silence model is even more important than for
the previous task: slightly over 2% in both cases. Note that the
performance of the word-based language model is better than that
of the class-based model in this task. However, class-based mod-
els seem to lead to a better performance in some spoken-dialog
classification systems, which motivated our experiments.

These results show two effects of the stochastic silence mod-
eling technique described earlier. First, the fact that the language
model is stochastic allows us to take the full benefit of our opti-
mization algorithm, which leads to a substantial speed improve-
ment (an HMM-state level optimized transducer with a standard
language model would only have been only marginally more effi-
cient than a lexicon-level optimized transducer). Second, the fact
that the new modeling technique allows the emission of silences

without disrupting the lexical dependencies leads to an asymptotic
increase of the word accuracy.

6. CONCLUSION

General techniques were presented for the design of efficient large-
vocabulary speech recognition transducers. The efficiency of the
resulting transducers was demonstrated by experiments in several
tasks with both word-based and class-based statistical language
models. These techniques are incorporated in a general decoder
library available for download for non-commercial use [2].
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