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ABSTRACT

Speech recognition systems for conversational telephone speech
require the audio data to be automatically divided into regions of
speech and non-speech. The quality of this audio segmentation
affects the recognition accuracy. This paper describes several ap-
proaches to segmentation and compares the resulting recogniser
performance. It is shown that using Gaussian Mixture Models out-
performs an energy-detection method and using the output from
the speech recogniser itself increases performance further. An up-
per bound on possible performance was obtained when deriving a
segmentation from a forced alignment of the reference words and
this outperformed using manually marked word times. Finally the
correlation between an appropriately defined segmentation score
and WER is shown to be over 0.95 across three data sets, suggest-
ing that segmentations can be evaluated directly without the need
for full decoding runs.

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems for conversational
telephone speech (CTS) data require the audio to be divided into
regions of speech and non-speech. The quality of the audio seg-
mentation affects the performance of the recogniser, for example if
speech regions are labelled as non-speech and discarded they pro-
duce deletion errors, whereas regions of non-speech which are not
discarded in segmentation may produce insertion errors. Recogni-
tion performance may also be affected by other properties of the
segmentation such as the minimum/maximum duration of a speech
segment or the tightness of the segment boundaries, for example
by affecting the normalisation or adaptation.

This paper investigates several different methods of producing
segmentations, based on either acoustic information, such as an
adaptive energy-based method or using Gaussian Mixture Mod-
els (GMMs); or on word-level timing information, such as using
a recogniser output, a forced alignment of the reference words,
or manually generated word times. The segmentations are com-
pared both from the resulting recognition word error rates (WER)
and a segmentation score which is the sum of the missed speech
and false alarm rates compared to a reference segmentation. The
results are given from experiments into how to maximise the cor-
relation between the segmentation score and WER, so as to allow
the WER to be predicted solely from the segmentation without the
need for potentially computationally expensive decoding runs.

This work was supported by DARPA grant MDA972-02-1-0013. The
paper does not necessarily reflect the position or the policy of the US Gov-
ernment and no official endorsement should be inferred.

This paper is arranged as follows. Section 2 explains the ’di-
arisation’ score used to evaluate the segmentations, Section 3 dis-
cusses the data used in the experiments and Section 4 describes
the segmentations. Section 5 briefly describes the recognition sys-
tems used to generate the WERs and compares the WERs resulting
from the segmentations, then Section 6 evaluates the correlation
between the diarisation score and the WER. Finally conclusions
are offered in Section 7.

2. THE DIARISATION SCORE

The segmentations are evaluated using the diarisation score, which
was defined for the 2003 Spring Rich Transcription (RT-03s) di-
arisation evaluation [1]. The general formulation takes a reference
and a hypothesis segmentation and performs a one-to-one map-
ping of the reference speaker IDs to the hypothesis speaker IDs so
as to maximise the total overlap of the reference and (correspond-
ing) mapped hypothesis speakers. Speaker detection performance
is then expressed in terms of the miss (speaker in reference but
not in hypothesis), false alarm (speaker in hypothesis but not in
reference), and speaker-error (mapped reference speaker is not the
same as the hypothesised speaker) rates. The overall diarisation
score is the sum of these three components, and can be calculated
using the following formula:

�
s dur(s) · (max(NR(s), NH(s)) − NC(s))

�
s dur(s) · NR(s)

where s is the longest continuous piece of audio for which the
reference and hypothesised speakers do not change, dur(s) is the
duration of s, NR(s) is the number of reference speakers in s,
NH(s) is the number of hypothesised speakers in s and NC(s)
is the number of mapped reference speakers which match the hy-
pothesised speakers. For the CTS data, the channels are provided
separately with only one speaker per side, so this becomes:

�
s dur(s) · (Hmiss(s) + Hfa(s))
�

s dur(s) · Href (s)

where H is always zero except Hmiss(s) is 1 for a missed speech
segment, Hfa(s) is 1 for a false alarm speech segment and Href (s)
is 1 for a segment containing a reference speaker. Thus missed
speech and false alarm speech errors are weighted equally in the
error count.

In the RT-03s diarisation evaluation, regions which contained
speaker-attributable vocal noise (and surrounding silence) were
excluded from scoring. We do not do this since, for the purposes
of ASR, any events in the audio which are not speech should be
treated in the same way as silence. We also chose to generate our
reference segmentations in a slightly different way (see section 6
for more details).
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3. DATA USED IN EXPERIMENTS

The experiments reported in this paper were conducted on the de-
velopment and evaluation data used in the English CTS RT-02
and RT-03 Rich Transcription evaluations.[2] The main data sets
are the RT-02 evaluation data (eval02) consisting of 60 5-minute
conversations, the December 2002 RT-03 dryrun data set (dry03)
which is a 12 conversation subset of eval02, and the main RT-03
STT evaluation set (eval03) consisting of 72 5-minute conversa-
tions. The eval02 and eval03 sets are relatively large and provide
more reliable results to be obtained, but the dry03 subset is also
necessary since some transcriptions or segmentations were only
available on this data. In particular, manually derived word times,
which were initially used to derive the diarisation reference were
only produced on the dry03 data set. Further details about the ex-
act composition of the data sets can be found in [3].

4. GENERATING SEGMENTATIONS

The data must be segmented into speech and non-speech regions
for recognition. The CUED RT-03 CTS recognition system used
a segmentation based on the CUED RT-03s CTS diarisation sys-
tem. This used GMMs to segment and label the audio as silence,
male or female and ran in 0.05xRT. Two different model sets were
built, one using Switchboard-I and II (phase 1 and 2) data, and the
other using cellular (Switchboard-II phase 4) data. Approximately
3 hours of training data was used for each model and the silence
model contained 128 mixture components, whilst the male and fe-
male models both contained 256. A Viterbi decoder was used to
find the most likely sequence of GMMs, ensuring only a single
gender and dataset per side were postulated. An insertion penalty
was used to prevent rapid oscillation between models. Each side
was processed independently, so no cross-channel modelling such
as that used by BBN [4] was performed, although experiments sug-
gest that the standard of the CUED and BBN CTS RT-03 segmen-
tations is similar. Further details are given in [3].

Additional segmentations were generated in the following ways

CUED Pre-ASR: This includes the GMM based system described
above, and a number of similar systems with slight varia-
tions in training data, models and/or parameters.

CUED Post-ASR: The word times output by the speech recog-
niser are used to define the regions of speech. The primary
run, Post-ASR-full, used the CUED RT-03 187xRT
CTS recogniser [5] to generate the word times. A contrast
run, Post-ASR-fast using the CUED RT-02-based
10xRT recogniser described in section 5 to generate the
word times is also provided.

Baselines: These are the two baseline segmentations, rt02base
and rt03base, provided by MIT-LL for the Rich Transcrip-
tion evaluations [2]. They use an adaptive energy-based de-
tector [6] and differ considerably in quality.

CUED FA: A forced alignment of the reference words to the au-
dio is performed and the resulting word times used to define
the regions of speech.

Manual word times: For the Dec 2002 dryrun 12-side subset of
the eval02 data, manually produced word times were pro-
vided, which were used to define the regions of speech.
Non-lexical tokens were ignored.

These initial segmentations were refined by having segments
of silence which were less than a certain critical length relabelled
as speech (smoothing) and where applicable, the boundaries of
speech segments expanded (padding). The smoothing and padding
parameters for diarisation scoring were chosen so as to match those
used when generating the reference file. It was found empirically
that using 0.6s smoothing and 0.2s padding resulted in the lowest
WER on the dry03 data, giving a 7.2% relative gain over the case
of no smoothing or padding [3]. Therefore when the segmenta-
tions are used as input to the speech recogniser, 0.6s smoothing
and 0.2s padding are added unless otherwise stated.

5. GENERATING WORD ERROR RATES

The recognition system used in this paper to measure the effect of
different segmentations on recognition accuracy is based on the
2002 CUED 10xRT CTS system developed for the RT-02 STT
evaluation [7]. The acoustic models were improved but the system
structure was unchanged. The system uses cross-word triphone
models and a fourgram language model with a 54k dictionary. The
acoustic features were based on PLP analysis and normalised us-
ing VTLN.

The system operates in three passes. The initial pass uses rel-
atively simple models to generate a transcription for use as super-
vision in the estimation of VTLN warp factors and global MLLR
adaptation transforms. The following two passes use models trained
using Minimum Phone Error Estimation and employ a global HLDA
transform in the feature extraction. The second pass generates
lattices which are then rescored in the final stage using models
adapted using 2 MLLR speech transforms per speaker.

In an additional experiment the more sophisticated 2003 CUED
10xRT system [8] was used on the eval03 data. This system em-
ploys two separate acoustic model sets in separate branches of the
final rescoring stage whose outputs are combined. One model set
was trained using Speaker Adaptive Training and the other em-
ploys a single pronunciation dictionary (SPron). All models were
trained using MPE and used HLDA. Adaptation was performed
using lattice-based MLLR and full-variance transforms.

The WERs for the segmentations described in section 4 on the
eval02 and dry03 subset, and the eval03 data are given in Table 1
along with that from using the (manually defined) segmentation
used in ASR scoring (the STM file) with no additional smoothing
or padding. These results show that the GMM-based pre-ASR seg-
mentation consistently outperforms the energy-based baseline seg-
mentations and the post-ASR segmentation outperforms the pre-
ASR segmentation on the eval02 and eval03 data sets, showing
that segmentations can be improved using the ASR output. (Since
the dry03 subset data set is only a fifth of the eval02 data set, the
WER numbers are more reliable on the latter).

It is also interesting to note that the segmentation derived from
the CUED forced alignment times consistently provide the best
WER results, outperforming the segmentation derived from the
manually marked word times on the dry03 subset, and the man-
ually defined STM segmentation on all three data sets. This may
be down to a system interaction effect, but suggests that to get
an upper bound on segmentation performance, or to predict the
WER of a CUED recognition system from just comparing seg-
mentations, the reference segmentation should be derived from the
CUED forced alignment times.
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System dry03 eval02 eval03
BASELINE rt02base 29.5 29.2 27.1 (22.8)
BASELINE rt03base 28.3 28.0 26.7 (22.4)
CUED Pre-ASR 28.1 27.3 26.3 (22.2)
CUED Post-ASR-fast 28.0 27.2 26.2 (22.0)
CUED Post-ASR-full 28.2 27.1 26.0 (22.0)
CUED FA word times 27.4 26.2 25.4 (21.3)
Manual word times 27.8 — — (—)
STM (unknown smth/pad) 27.7 26.7 25.6 (21.6)

Table 1. Word Error Rates using different segmentations for CTS
data. Numbers in parenthesis are from using the RT-03 based
recogniser.

6. THE CORRELATION BETWEEN DIARISATION
SCORE AND WER

The quality of the segmentation clearly affects the quality of the
recogniser output and thus the WER. Ideally we would like to
be able to predict the WER directly from the segmentation, so as
to allow different segmentation configurations to be tried without
needing to perform a (computationally expensive) full decode for
every case. The diarisation score offers a way of measuring seg-
mentation performance by summing the missed speech and false
alarm speech giving equal weighting to both. This does not there-
fore reflect the commonly held view that for ASR segmentations
the missed speech is more important than the false alarm speech,
since the latter is recoverable for example by matching a silence
acoustic model. However, it offers an unbiased comparison of two
segmentations in that the numerator of the error score is indepen-
dent of which file is the reference and which the hypothesis.

In order to investigate the correlation between the diarisation
score and the WER, 16 segmentations were made on the dry03
data subset. These were derived from 10 CUED Pre-ASR runs, 2
CUED Post-ASR runs, 2 Baseline runs, the CUED forced align-
ment word times and the manual word times. A diarisation refer-
ence was generated from the manual word times using 0.6s smooth-
ing, and diarisation scores of the (similarly smoothed) segmenta-
tions were calculated. Segmentations were similarly made on the
eval02 data for all cases except for the manual word times (which
were only available on the dry03 subset). The WER was then
found using the RT-02 based recogniser described in section 5 on
the dry03 data and the eval02 superset after adding an additional
0.2s padding to the (smoothed) segmentations. The results are il-
lustrated in Figure 1.

It was noted in section 5 that the CUED-FA derived segmenta-
tion gave a lower WER than using the manual times possibly due
to a system interaction effect, and thus it may be more appropri-
ate to use the CUED-FA times to derive the diarisation reference
when trying to use the diarisation score to predict the WER of a
CUED recogniser. To investigate this more carefully, the diarisa-
tion scores were recalculated using a reference derived from the
CUED forced alignment word times. The results are illustrated
in Figure 2. The correlation coefficients between the diarisation
scores and the word error rates are given in Table 2.

The results show there is a strong correlation between the di-
arisation scores and the subsequent WERs of the system, and this
correlation is highest when the diarisation reference is derived from
the CUED forced alignment word times. In particular, the correla-
tion between the diarisation score and the WER on the dry03 data
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Fig. 1. Relationship between diarisation score on dry03 data and
WER on eval02 and dry03 data. The dashed line shows the divi-
sion between the two data sets. The manual word times were used
to derive the diarisation reference.
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Fig. 2. Relationship between diarisation score on dry03 data and
WER on eval02 and dry03 data. The dashed line shows the di-
vision between the two data sets. The CUED forced alignment
word times for the dry03 data were used to derive the diarisation
reference.

DIARY DIARY WER WER
Manual Ref FA Ref dry03 eval02

DIARY(Man) 1.00 0.94 0.90 0.93
DIARY(FA) - 1.00 0.98 0.98
WER(dry03) - - 1.00 0.94
WER(eval02) - - - 1.00

Table 2. Correlation Coefficients for predicting the eval02 WER
from the dry03 subset

rises from 0.90 to 0.98, and that between the dry03 data diarisa-
tion score and the WER on the eval02 superset rises from 0.93 to
0.98. This is very encouraging, given that the correlation between
the WERs themselves on the two sets is only 0.94. This suggests
that predicting the WER on the eval02 superset of data using just
the dry03 subset, can be done with as much confidence using the
diarisation score as the WER, so new segmentations can be tested
without the need for computationally expensive decoding runs.
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An added advantage of using forced alignments to generate
the diarisation reference is that they can be produced with rela-
tively little manual effort and thus, unlike using manually gener-
ated word times, are possible to obtain for large data sets. A di-
arisation reference was thus constructed for the eval02 and eval03
data starting with the CUED forced alignments. The results are il-
lustrated in Figure 3 and the correlation between diarisation scores
and WER given in Table 3. These results confirm that there is a
very high correlation between the diarisation score and the WER
providing the reference is generated appropriately, and this corre-
lation is maintained across different data sets and recognisers.
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Fig. 3. Relationship between diarisation score and WER on the
eval02 and eval03 data, using the CUED forced alignment word
times to derive the diarisation reference.

Dataset Size Num Points Correlation
eval02 5 hrs 15 0.96 / 0.96
eval03 6 hrs 6 0.99 / 0.99 (0.97 / 0.98)

Table 3. Correlation Coefficients between the diarisation score
and the WER when using the CUED forced alignment to derive
the diarisation reference. The second number is when adding 0.2s
padding (in addition to the 0.6s smoothing) to the segmentations
when calculating the diarisation score. The numbers in parenthesis
are from using the RT-03 based recogniser.

7. CONCLUSIONS

Segmentations for the CTS data can be generated using many dif-
ferent methods and can be compared using the diarisation score.
Adding 0.6s smoothing and 0.2s padding to the segmentations min-
imised the resulting WER from the recogniser and thus 0.6s smooth-
ing was added to the segmentations for diarisation scoring. Also
including the padding was found to have little impact on the corre-
lation between the diarisation scores and WER and so was omitted.

Using the ASR output to refine the segmentation proved ben-
eficial, reducing both diarisation score and WER. An upper bound
on performance was obtained using a segmentation derived from
the CUED forced alignment word times. This also outperformed
using manually derived word or segment-level times. Generating
the diarisation references from the CUED forced alignment word
times rather than the manually derived word times also increased
the correlation between diarisation score and WER, and made it
possible to score much larger data sets.

The WER on the eval02 data can be predicted from the dry03
subset with just as much confidence using the diarisation score as
the WER itself. The correlation coefficient between the diarisation
score and WER was over 0.95 on both the eval02 and eval03 data
sets even when the recogniser was changed, showing the value of a
segmentation for ASR can generally be judged from the diarisation
score without needing computationally expensive recogniser runs.
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