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ABSTRACT

This paper presents an application of missing data techniques in

speech enhancement. The enhancement system consists of two

stages: the first stage uses a Recurrent Neural Network, which is

supplied with noisy speech and produces enhanced speech;

whereas the second stage uses missing data techniques to further

improve the quality of enhanced speech. The results suggest that

combining missing data technique with RNN enhancement is an

effective enhancement scheme resulting in a 16 dB background

noise reduction for all input signal to noise ratio (SNR) conditions

from -5 to 20 dB, improved spectral quality and robust automatic

speech recognition performance.

1. INTRODUCTION

The operation of automatic speech recognition (ASR) systems,

telecommunication applications and cellular phones under

varying background noise conditions has made speech

enhancement an interesting area of research for the past two

decades [1-8]. Various approaches to speech enhancement have

been proposed to date [1], [2]. The aim of all state-of-the-art

speech enhancement techniques is to improve the perceptual

aspects of quality and intelligibility of speech by utilising the

estimated noise [3].

Speech enhancement techniques can be divided into two

broad categories; parametric and non-parametric. Parametric

approaches are based on mathematical models and are able to

extract high resolution frequency spectra from relatively short

data sets provided that the structure of signal is known. These

techniques require more prior knowledge with the increase in the

complexity of signal than non-parametric approaches. Non-

parametric approaches are, therefore, more suitable for complex

signals. Spectral subtraction is a simple and popular non-

parametric enhancement method [4], [5]. It makes simplifying

assumptions about the shape of noise and its combination with the

speech signal. The major drawback of this technique is that it is

difficult to deal with non-stationary noises. Another disadvantage

is the effect of musical noise in the enhanced speech, which is

caused by setting to zero the negative energy values which result

from subtraction of overestimated noise.

Neural enhancement techniques efficiently reduce the effect

of musical noise because neural networks provide a smoother

estimate of the signal [6]. The capability of artificial neural

networks (ANNs) to approximate any non-linear function also

makes them suitable for non-linear transformations commonly

used in speech feature extraction e.g. log spectrum, mel frequency

cepstral coefficients (MFCCs). Several researchers have used

ANNs for speech enhancement [2], [7], [8]. Conventional ANNs,

despite their strong generalisation capability, can not easily model

the temporal behaviour of speech signal: the only way to address

this issue is to use a windowed input of time-neighbouring

features. RNN, on the other hand, have the potential to deal

naturally with the variable length of speech signal and also can

capture long-term contextual effects over time which may be

useful for better enhancement.

We use RNNs as the primary speech enhancement system. In

addition, the use of missing data techniques are exploited in a

simplistic manner for speech enhancement in the spectral domain. 

2. MISSING DATA TECHNIQUES

Missing data techniques, primarily developed for robust ASR, [9],

[10], [11], [12] deal with speech corrupted by additive noise.

They make minimal assumptions about the nature of the noise.

They are based on identifying uncorrupted, reliable regions in the

frequency domain and adapting recognition algorithms so that

classification is based on these regions.

2.1. Missing Data Masks

In the ‘missing data’ approach to speech recognition in the

presence of other sound sources, the assumption is that some

spectral-temporal regions will remain uncorrupted, and the

remainder can be thought of as ‘missing’ for the recognition task.

See [10] for supporting arguments.

Initial processes, based on local signal-to-noise estimates

[10], on auditory grouping cues [13], or a combination [9] define

a binary ‘missing data mask’: ones in the mask indicate reliable

(or ‘present’) features and zeros indicate unreliable (or ‘missing’)

features (see Figure 1).

3. SPEECH ENHANCEMENT AND MISSING DATA

When noise is added to speech, the effect of noise is insignificant

in spectral regions with high speech energy. Missing data

techniques in ASR benefit from this information to derive missing

data masks by assuming that each time-frequency region is either

dominated by the speech signal or the noise source (Figure 1).
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The choice of frequency channels for enhancement can be made

by using these missing data masks. Furthermore,

• The masks can be used during training of the enhancement

net to selectively reduce the error of the output units by using

clean values of speech as the target for the unreliable

channels. The output error for the channels which are within

the mask can be reduced by using noisy speech as the target. 

• The other way of deploying missing data masks could be to

use them with an enhancement net trained in the normal way.

In this case, the channels which are highly affected by the

noise can be replaced with the output of the enhancement net,

(Figure 2). The resulting feature vectors can be supplied to an

existing speech recogniser.

4. RNN BASED SPEECH ENHANCEMENT

RNNs have the potential to capture long-term contextual effects

over time which may be useful for better enhancement. Moon [8]

has used RNNs for speech enhancement where separate RNNs

were trained on 180 isolated words corrupted with white and

coloured noise at SNRs 0 dB, 10 dB and 20 dB (resulting in six

trained RNNs). The use of RNNs to perform both enhancement

and classification using a single net (multitask learning) has been

reported in our earlier papers [14, 15]. In the current paper we

present an application of missing data in speech enhancement. 

Figure 2 shows the block diagram of our speech enhancement

system. The first stage consists of an RNN which is supplied with

noisy speech spectra and produces enhanced speech. In

comparison to [8], a single RNN is trained for four different

noises at SNRs from 0 dB to 20 dB with a difference of 5 dB. The

second stage uses the missing data technique to produce the final

enhanced speech spectra.

4.1. RNN architecture

The RNN is supplied with noisy speech at time t and produces

enhanced speech for the same time. The RNN basically has an

Elman architecture [16], where there are fully connected recurrent

links from the past hidden layer to the present hidden layer. The

number of input and output units depends on the size of feature

vector, i.e. the number of spectral channels (32 channels in the

experiments reported). The number of hidden units is determined

by experimentation (30 in our experiments). 

RNN weights are updated using back-propagation through

time [17]. The error for the enhanced features is estimated as the

sum squared error between the correct targets (the clean

spectrum) and the RNN output for each frame.

The enhancement phase consists of a forward pass to produce

RNN output for enhancement at each time step.

4.2. Missing data filter

The second stage chooses the regions of noisy speech with higher

levels of corruption by using a missing data mask, , and

replaces them with the enhanced speech, , coming from

RNN enhancer. 

 (1)

where  and  represent noisy and the enhanced feature

respectively.

Missing data mask was produced by using a local SNR criterion

(row 2 of Figure 1) in which noise is estimated from the first few

silence frames and then the local SNR is compared with a

threshold to define missing spectral-temporal region [10]. The

compressive nature of energies in the spectral domain makes the

effect of noise insignificant at peaks in the spectrum. Therefore,

the enhanced speech after this stage consists perceptually clean

speech and is less affected by the distortions produced by the

enhancement scheme for relatively clean speech.

5. EXPERIMENTAL SETUP AND DATABASE

Experiments were performed using data from male speakers in

the isolated digits section of the AURORA database [18]. This

database contains about 1200 isolated digits from 55 male

speakers, where each speaker spoke 2 examples of the 11 word

vocabulary (the digits 1-9, ‘oh’ and ‘zero’). All speech data in the

Aurora database is in turn obtained from the TIDigit database

after downsampling to 8 KHz and filtering with a G712

characteristic. 

1000 examples were chosen for training. A validation set of

Figure 1: Auditory spectrograms (row 1) and SNR mask (row
2) for digit ‘One’ with subway noise at various SNRs (left to
right: 20 dB, 10 dB)
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110 examples was used to control the stopping condition in

training. Performance was evaluated on the isolated digit section

of AURORA test set A and test set B. The speech in test set A is

additively corrupted with four noises (subway, babble, car and

exhibition hall) at SNRs from 20 dB to -5 dB at 5 dB intervals

whereas, test set B consists of speech added with restaurant,

street, airport and train station noises.

Acoustic vectors were obtained from a 32 channel auditory

filter bank [19] with centre frequencies spaced linearly in ERB-

rate from 50 to 3750 Hz. The instantaneous Hilbert envelope at

the output of each filter was smoothed with a first order filter with

an 8 ms time constant, and sampled at a frame rate of 10 ms.

Finally, a cube root compression was applied to the frame of

energy values. Spectral domain acoustic vectors were used

because of the requirement of missing data mask generation

process.

6. RESULTS

Speech enhancement results are evaluated in terms of isolated

word recognition performance and pattern completion

performance. In order to visualise the effect of enhancement

schemes the auditory spectrograms for digit ‘Three’ with subway

noise are shown in Figure 3. It is clear from the RNN enhanced

spectrograms (row 2 and 3 of Figure 3) that background noise is

reduced effectively with and without the use of missing data

mask.

6.1. Recognition performance

The speech enhanced using missing data filter was supplied to

both RNNs trained on clean speech (‘RNN:RNNENH+SNR

mask’ curve in figure 4) and an RNN trained on noisy speech

(‘MCRNN:RNNENH +SNR mask’ curve) for isolated word

recognition. The RNNs had 32 input units, 120 hidden units and

11 output units associated with 11 isolated digits. The average

classification performance of our systems is shown in Figure 4 (a)

for noises in Aurora test A. We compare our results with:

1. A classification RNN trained on clean speech and tested on

spectral subtraction enhancement (‘RNN:SS’ curve). 

2. A classification RNN trained on clean speech and tested on

RNN enhanced speech (‘RNN:RNNENH’ curve). 

3. A CDHMM systems trained on clean isolated digits and

tested using marginalisation based missing data recognition

(‘HMM:MARG+SNR mask’ curve). These systems consisted

of eleven whole word HMMs (‘1’ - ‘9’, ‘oh’, ‘zero’), each

with 16 states and 2 mixtures per state.

The improvement in results compared to spectral subtraction can

be seen with the proposed enhancement scheme and results for

noises in set B were similar. Cascading the RNN enhanced speech

with a classification RNN trained on noisy speech gave higher

performance i.e. the average (i.e. for all conditions including

clean speech and noisy speech at SNRs from -5 dB to 20 dB)

incremental word error rate (WER) reduction of 3.78% (17.36%

relative WER reduction) compared to marginalisation. 

6.2. Pattern completion performance

Speech enhancement results obtained from a separate RNN

(‘RNNENH’ curve) and missing data based RNN enhancement

(‘RNNENH+SNR mask’ curve) are compared with spectral

subtraction (‘SS’ curve) and noisy condition (‘NP’ curve). The

average results for speech added with all noises in Aurora test set

A are shown at SNRs 20, 15, 10, 5, 0, -5 dB as measures of noise
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Figure 3: Auditory spectrograms (row 1), RNN enhanced
spectrograms (row 2) and MD based RNN enhanced
spectrograms (row 3) for digit ‘Three’ with subway noise at
SNRs 20 dB and 0 dB (left to right).
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Figure 4: Speech enhancement results obtained from RNN for
test set A as a measure of (a) Classification error (b) Noise
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completion error.
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reduction, correlation coefficients between clean & enhanced

speech spectra and pattern completion error in Figures 4 (b), 4 (c)

and 4 (d) respectively.

• RNN enhancement resulted in a higher reduction in noise

compared to spectral subtraction for all SNRs except 20 dB.

The reason might be that RNN enhancement at high SNRs

results in over estimation of the noise.

• The correlation coefficient for RNN enhancement was also

higher than spectral subtraction at all SNRs down to -5 dB.

• Relative error with RNN enhancement was lower than

spectral subtraction for all the SNRs.

• The effect of cascading RNN enhancement with missing data

masks (‘RNNENH+SNR mask’ curve) can be seen clearly in

terms of noise reduction i.e., more than 16 dB for all input

SNRs. The reason is that using missing data mask prevents

the distortion in the spectrum in high SNR regions caused by

RNN enhancement.

The performance was higher for stationary noises than non-

stationary noises like babble noise, recording on the street and at

the airport. The reason is that RNN enhancement like most other

enhancement methods performs better with stationary noise.

7. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated the effectiveness of missing

data techniques in neural speech enhancement.

• Our results show that RNNs give better enhancement

performance than traditional spectral subtraction and estimate

an smoothed enhanced spectrum.

• Using missing data masks to selectively enhance the speech

helped to boost recognition accuracy of the RNN trained on

clean speech. However, the performance improvement was

more noticeable with the RNN trained on noisy speech.

The results can further be improved by deriving more accurate

missing data masks. The drawback of this approach is that it does

not work well for non-stationary noises because RNN

enhancement needs the noise to be stationary. Using a relatively

large number of training samples associated with a particular non-

stationary noise may increase the overall performance.

Alternatively, the performance of an enhancement system can be

improved by employing multiple nets trained on different noises/

SNRs and then applying some model switching method [7]. These

ideas can also be extended using multitask learning [20] by

defining additional targets at the output of RNN for each noise/

SNR in order to avoid switching problems.

8. ACKNOWLEDGEMENT

This work was supported by Nokia Mobile Phones, Denmark and

the UK Overseas Research Studentship scheme.

9. REFERENCES

[1] Ephraim, Y. (1992). “Statistical-model-based speech

enhancement systems.” Proceedings of the IEEE, vol. 80, no. 10,

p. 1526-1555, October 1992.

[2] Jones, M. and Sridharan, S. (1996). “Improving the

effectiveness of existing noise reduction techniques using neural

networks.” In Proceedings of Fourth International Symposium on

Signal Processing and its Applications, volume 1, p. 387-388.

[3] Gaafar, M., Saleh, K. and Niranjan, M. (1998). “Speech

enhancement in a Bayesian framework.” Proc. ICASSP 1998.

[4] Berouti, M., Schwartz, R. and Makhoul, J. (1979).

“Enhancement of speech corrupted by acoustic noise.” In ICASSP

1979, p. 208-211.

[5] Lockwood, P. et al. (1991). “Noise reduction for speech

enhancement in cars: Non-linear spectral subtraction/ Kalman

filtering.” Proc. EUROSPEECH 1991.

[6] Wan, E. A. and Nelson, A. T. (1998). “Networks for Speech

Enhancement.” in Handbook of Neural Networks for Speech

Processing, Boston, USA, Artech House, Eds. Shigeru Katagiri,

1998, ISBN: 0-89006-954-9. p. 541-541.

[7] Tamura, S. and Nakamura, M. (1990). “Improvements to the

noise reduction neural network.” Proc. ICASSP 1990, p. 825-828.

[8] Moon, S. and Hwang, J.-N. (1993). “Coordinated training of

noise removing networks.” In ICASSP 1993, vol. 1, p. 573-76.

[9] Barker, J. et al. (2001). “Linking auditory scene analysis and

robust ASR by missing data techniques.” Workshop on Innovation

in Speech Processing 2001, Stratford-upon-Avon, UK.

[10] Cooke, M. et al. (2001). “Robust automatic speech

recognition with missing and unreliable acoustic data.” Speech

Communication, vol. 34, no. 3, p.267-285.

[11] Drygajlo, A. & El-Maliki, M. (1998). “Speaker verification

in noisy environment with combined spectral subtraction and

missing data theory.” Proc ICASSP 1998, vol. I, p. 121-124.

[12] Raj, B., Seltzer, M., & Stern, R. (2000). “Reconstruction of

damaged spectrographic features for robust speech recognition.”

Proc. ICSLP 2000.

[13] Palomäki K. J., Brown G. J. and Barker J. (2002). “Missing

data speech recognition in reverberant conditions.” ICASSP 2002,

Orlando, Florida, USA.

[14] Parveen, S. and Green, P. (2001). “Speech Recognition with

Missing data techniques using Recurrent Neural Networks.”

Advances in Neural Information Processing Systems 14, (T.G.

Dietterich, S. Becker and Z. Ghahramani eds.), MIT Press. 

[15] Parveen, S. and Green, P. (2003). “Multitask Learning in

Connectionist Robust ASR using Recurrent Neural Networks.”

EUROSPEECH 2003, Geneva, Switzerland. p. 1813-1816.

[16] Elman, J.L. (1990). “Finding structure in time.” Cognitive

Science, vol. 14, p. 179-211.

[17] Werbos. P. J. (1990). “Backpropagation Through Time:

What it does and how to do it.” Proceedings of the IEEE, vol. 78,

no. 10, p. 1550-1560.

[18] Pearce, D. and Hirsch, H.G. (2000). “The aurora

experimental framework for the performance evaluation of

speech recognition systems under noisy conditions.” In Proc.

ICSLP 2000, Beijing, China.

[19] Cooke, M.P. (1991). “Modelling Auditory Processing and

organisation”. PhD thesis, Department of Computer Science,

University of Sheffield.

[20] Caruana, R. (1997). “Multitask Learning.” Machine

Learning, PhD Thesis, CMU.

I - 736

➡ ➠


