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ABSTRACT

We report a work on speech enhancement that combines sequen-
tial noise estimation and perceptual filtering. The sequential es-
timation employs an extension of the sequential EM-type algo-
rithm. In this algorithm, statistics of clean speech are modeled by
hidden Markov models (HMM) and noise is assumed to be Gaus-
sian distributed with a time-varying mean vector (the noise pa-
rameter) to be estimated. The estimation process uses a non-linear
function that relates speech statistics, noise, and noisy observa-
tion. With the estimated noise parameter, subtraction-type algo-
rithm for speech enhancement may be extended to non-stationary
environments. In particular, a perceptual filter with frequency
masking is constructed with a tradeoff between noise reduction
and speech distortion considering the sensitivity of speech recog-
nition systems to speech distortion. Our experiments in speech
enhancement and speech recognition in non-stationary noise con-
firmed that this approach seems promising in improving perfor-
mances compared to alternative speech enhancement algorithms.

1. INTRODUCTION

The goal of speech enhancement is to recover original speech sig-
nals from noisy observations, and has been greatly studied in the
past decades [1]. Traditional methods [2][3] usually assume that
the statistics of the contaminating noise is known to the enhance-
ment system. In the simplest manner, the noise statistics can be
modeled by a simple Gaussian density, which assumes that noise
statistics is constant. More detailed modeling of noise statistics
may be done by using Gaussian mixture models (GMM). This
assumption requires sufficient amount of noise data to learn the
noise statistics. Unfortunately, the assumption may not hold in re-
alistic environments, where noise statistics may differ from those
during training, thus limiting the performance of these methods.

More recently, researchers have started to investigate speech
enhancement in time-varying noisy environments. Proposed meth-
ods assume a parametric function to relate speech and background
noise, and use sequential methods, e.g., sequential Monte Carlo [4]
and Bayesian inference [5]. These methods usually use HMM to
model clean speech statistics and a simple noise model with pa-
rameters to be estimated from noisy speech.

This paper presents a method for speech enhancement within
the above approach but makes the following contributions. First,
for the purpose of sequential noise parameter estimation, it is
beneficial to have algorithms with fast convergence rate and low
computational requirements. Since the noise parameter estima-
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tion process involves estimation of hidden speech mixtures/states,
(deterministic or stochastic) EM-type algorithms have to be used.
This paper applies the sequential Kullback proximal algorithm
(SKP) [6], which is a sequential version of the Kullback proxi-
mal algorithm [7]. The Kullback proximal algorithm can achieve
faster convergence rate than the normal EM algorithm. Moreover,
the computational requirement for the SKP algorithm is much less
than some alternative methods [4][5]. Second contribution is a
subtraction-type speech enhancement algorithm that makes use
of the estimated noise statistics. The subtraction-type algorithm
is designed to consider a tradeoff between noise reduction and
speech distortion, as both have influences on speech recognition
system performances. The tradeoff may be achieved by retaining
a certain amount of residual noise in the enhanced speech sig-
nals. We suggest to employ human auditory properties [8] for
the design of the subtraction-type algorithm. Although human
auditory properties have been applied to some previous methods,
e.g., [3], these previous methods may not be able to handle time-
varying noise [3] as their underlying assumption of noise station-
arity. With the sequential noise estimation in this paper, we may
extend these previous works [3] to time-varying environments.
We conducted experiments on speech enhancement and speech
recognition in time-varying noisy environment to verify the algo-
rithm and validate its applicability.

2. SPEECH ENHANCEMENT WITH SEQUENTIAL
NOISE PARAMETER ESTIMATION

2.1. Time-varying Linear Filtering

Assume speech and noise are uncorrelated. In this context, the
power spectrum of the input noisy signal at filter bin j (1 < 5 <
J), Y]““(t) can be considered as the summation of the power
spectrum from the clean speech signal and the noise, i.e.,

where superscript /in denotes linear spectral domain.

The process of subtraction-type enhancement methods is equiv-
alent to attenuating the above spectrum with a time-varying co-
efficient H; (t), i.e., X\'™(t) = H;(t) X1 (t) + H; () NI™ ().
We consider two choices for speech enhancement because of their
simplicity.

1. Wiener filter constructs the coefficient as H;(t) = |1 —
Nl ()
TG | where operator | - | means absolute value, and
J
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Nf"(t) is the estimate of noise power spectrum.
2. Perceptual filter constructs H; (¢) so that the filtered noise

power spectrum Hj (t)- N, ]“" (t) below the masking thresh-
old of the denoised speech, i.e.,

Hj(t)- Nj™(t) < T;(t) @)

where T (¢) is the masking threshold of the denoised speech
signal, and it is a function of clean speech signal X]’-i" (#).
Since X} (t) is not directly observed, XJ”" (t) =Y/ (t)-
N]“"(t) is used instead, which makes the masking thresh-
old as a function of the estimated noise component N Jl n(¢).

Note that both of the filters require estimated noise power spectra.

2.2. Sequential Noise Parameter Estimation

We use superscript [ to denote log-spectral domain. Log-spectral
vectors of clean speech signals are modeled by the HMM Ax.
Assuming that the variances of speech spectrum a:é (t) =log X ]”" (t)
and noise spectrum nj (t) = log N]”" (t) are very small, the fol-
lowing equation may be used to relate speech mean vector j,, in
mixture k of state ¢ in Ax by

Al (1) = pbe +og (1 + exp(d (1)

where i, (t) denotes time-varying mean vector of (n (t) - -
The mean vector is hereafter called as noise parameter. We denote
the sequence of noise parameter by An (t) = (An (t—1)An(2)),
where Ay (t) = i, (t). The transformed jit, (t) represents speech
mean vector at state ¢ and mixture k for noisy speech observation
more accurately than yt, . The likelihood function is then given as
log by (v (£)| A (1 : 1)) = log P(y' ()]i, k, Ax, An(1: ) =
C = 5(y'(t) = i ()" S5 (v (t) = fuir()), where C'is not a
function of pl, (t).

In the context of speech enhancement, noise parameters may
be obtained by maximum likelihood estimation as

v )AN(1:8),Ax), (&)

— Hix)) 3)

v (t) = arg max P
(1) = arg max P(

which involves Eq. (3) to construct the above likelihood function
to relate noisy observation y'(1 : t), noise parameter yl () in
An(1 : t), and speech mean vector !, in Ax. Since the esti-
mation involves hidden speech state sequence S(¢) in HMM, EM
type algorithm has to be applied.

E-step: Given An(1: ¢t —1) = (An(1),---, An(t — 1)) as
the previously estimated noise parameter sequence, calculate the
posterior probability P(S(¢)[y' (1 : ), Ax, (Ax(t—1), An(t—
1))).

M-step: Obtain time-varying noise parameter by the following
objective function,

N(t) = arg max Qe(Av(t = 1); A (2))

— (B = DIGN(E— 1) An(2) ®)
where the auxiliary function is defined as
QA (t = 1) An (1) = ©
D P(SMOly'(1: 1), Ax, (An(t = 1), An(t = 1))

S(t)
log{P(y'(1:t), S(t)|Ax, (An(t — 1), An (t))},

iy (1))".

and the Kullback-Leibler (K-L)distance is
IAN(t = 1) An (D) = )
D PSE)Y'(1:), Ax, (Ax(t—1),An(t — 1))

S(t)

o POV (1: ). Ax (R (= 1), 3 (= 1)))
P(S@)ly (1 : ), Ax, (An(t — 1), An(t)))

In Eq. (5), B: € RT works as a relaxation factor. The algorithm
is called as sequential Kullback proximal algorithm [6], and it
may achieve faster convergence rate than the sequential EM algo-
rithm'.

After manipulations on the second-order Taylor series of Eq.
(5), updating of Ay (t) is achieved as’

() = At = 1) = (G D) (Do
(8)
where
OF(t) dlog bir (y' (£)|An (t))
o (1) Z;; ik (?) On (1) ©
and
O F(t) 9% log bk (y' (1) [An (1))
EIWOR =pBi{p-C+ zk: Yir(t) 5 8k)\:;](t)2| = }
) l .
H1= B (bt ALK (2osbuly W (@)
9’ log bix (y (t)|)‘N 1) (10

OAN(1)? I

2 1
C = Z-r 1pt 1—7 sz %k(r)a logb%k)\(z(s—f)éMN(f))|>\N(T):5\N(T)’
and vig(t) = P(ikly'(1 : £),(An(1 : ¢t — 1), An(t — 1)) is
given by the normalized likelihood for partial state sequence [6].
p € (0,1] is forgetting factor. Differentials of log-likelihood

) ol aul, (t
Ww.It. noise parameters are w = Gy ‘53’35) and
82 log by (y'(t Onip (t 0% ngy (¢
ogaj\kz(y ) _— H,, “M( )) + Gy :;’2*( ), where the
N

jjth element in diagonal matnces G\, and H), are respec-

h () =pirj (t-1)) 1
O ik 1)

tivelygivenasGAij = and Hyyjj = — 52—
ikj ikj
(t) %ty (1) exp(pl ; (8)—ply )
Uc ik J tk)
The jth element in m and a)\z re Trexp(ul NOE ulk])
exp(ul, () —ply ) .
and ———tng ki respectively.

(texp(ul, ; () —ply )2
The algorlthm 1mplemented in this paper differs from the
work in [6] in that the operations are on features in log-spectral
domain instead of cepstral domain as in [6]. Since the primary
goal of the work is to enhance speech signals instead of speech
recognition, the models A x are trained from log-spectral features.
As a result, the number of filter banks .J increases from twenties
in speech recognition to 65 in the work, and the differentials in
the above paragraph have been modified from [6] for log-spectral
observations.

'"When B¢ = 1.0, Eq. (5) corresponds to sequential EM algorithm.
2Some derivations are in [6].
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2.3. Perceptual Filter

The perceptual filter works in the linear spectral domain. As de-
scribed in Section 2.1, the perceptual filter employs human audi-
tory property with masking. This is manifested by the different
design function for Wiener filter and for the perceptual filter in
Eq. (2). Furthermore, it is known that automatic speech recog-
nition is sensitive to nonstationary noise. The more nonstation-
ary the noise is, the easier an insertion error (e.g., false recog-
nition of noise as speech event) may occur. We would have a
further requirement on the “stationarity” of the output noise af-
ter filtering. Denote the actual noise power spectrum after fil-
tering as H; ()N} (t) and the desired noise power spectrum as
N Jlm () [9]. We constrain the error between actual noise spec-
trum and desired noise spectrum within a masking threshold,

NI™(#)(H;(t) — €°) < Tj(t) (11)

Note that Eq. (11) is more general than the criterion in Eq.
(2), which corresponds to setting & = 0. This is equivalent to
saying that, the filter in Eq. (2) has no desired noise output,
whereas setting £ > 0 in Eq. (11) allows residual noise out-
put. This retained residual noise component EZN]”" (t) could be
helpful to smooth output spectra, thus results in more station-
ary output noise. Solving Eq. (11) for H;(t) with constraint
H;(t) < 1.0 yields the spectral weighting function H;(t) =

N?,Et()t) +&2,1.0}. Since N]”"(t) has to be estimated, the

above function is rewritten as,

min{

H;(t) = min{]g;i—n(?t) +£°,1.0} (12)

Now, the estimated noise parameter ji, (t) presented in Section 2.2
is transformed into linear-spectral domain by N lin (t) = log fik,; (1)
for each filter bank j. Masking threshold T} (¢) in the above equa-
tion is obtained from frequency masking model by [8]. Since
the model requires clean speech power, we approximate the clean

speech power by output spectrum from Wiener filter, i.e., X ]“" (t) =

max{Y}"(t) — ]\A/'Jl-i” (t),0}. We thus combined the sequential
noise estimation and the filtering function (12) to have a novel
perceptual filter for speech enhancement.

2.4. Proposed Speech Enhancement Algorithm

The speech enhancement algorithm is thus a combination of se-

quential noise parameter estimation and speech enhancement method

exploiting masking properties. At each frame ¢, the algorithm
carries out noise parameter estimation in log-spectral domain and
perceptual enhancement of noisy speech in time-domain. Noise
parameter estimation works in the log-spectral domain with the
objective function (5). Speech spectrum is first enhanced by a
Wiener filter which is designed with the estimated noise spectrum.
The enhanced speech spectrum is used to calculate the masking
threshold. The perceptual filter is designed with the masking
threshold and the estimated noise parameter by Eq. (12). The
perceptual filter then does filtering of the noisy speech.

3. PERFORMANCE EVALUATION

Speech signals were taken from the Aurora 2 database. Speech
model was trained from log-spectral speech power on 8840 clean
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Fig. 1. SNR improvement for various noise types and input
SNRs: (a) White noise; (b) Simulated non-stationary noise; (c)
Babble noise; (d) Restaurant noise. The tested methods are as
follows: (—o—) Perceptual filter with sequential noise parameter
estimation, (— A —) Wiener filter with sequential noise parameter
estimation, and (— x —) the traditional Wiener filter.

speech utterances, and was a left-to-right HMM with 18 states
and 8 Gaussian mixtures in each state. Noise model was a sin-
gle Gaussian with time-varying mean vector. The window size
was 25.0ms with a 10.0ms shift. Number of filter banks .J was
65. Contaminating noise includes simulated nonstationary noise
(generated by multiplying white noise signals with a time-varying
factor in the time domain), White, Babble, and Restaurant noise.
We compared three systems. The first system, denoted as
Baseline, was Wiener filtering implemented according to [2], in
which voice activity detection (VAD) was used for decision of
speech/noise segments in utterances. The second system, denoted
as Known, differed from the first system in the way that the noise
parameter was estimated by sequential estimation in Section 2.2.
The third system, denoted as Perceptual, was the proposed speech
enhancement algorithm in Section 2.4. Relaxation factor 3; in Eq.
(5) was set to 0.9.
SNR Improvement: The amount of noise reduction is mea-
sured with the Segmental SNR (SegSNR) improvement. Percep-
tual filter had the flooring constant ¢ in Eq. (12) set to zero.
Fig. 1 shows the SegSNR improvement obtained from various
noise types and at various noise levels. Positive SNR improve-
ments are observed for system “Known” and system “Perceptual”
with sequential noise parameter estimation. Such performance
differences present the efficacy of sequential noise parameter es-
timation. Furthermore, system “Perceptual”, which is a combina-
tion of auditory modeling and sequential noise parameter estima-
tion, has larger SNR improvements than system “Known”, which
confirms observations by other researchers that incorporation of
human auditory property is helpful to achieve improved noise re-
duction in low SNR conditions.
Speech Spectrograms: Since speech spectrograms provide the
structure of the residual noise, we present spectrograms of speech
signals after processing by these systems in Fig. 2. The simu-
lated nonstationary noise had SNR at 0.8dB. It is observed that
the noise power appeared after 0.4s (almost at the time when the
speech segments was occurring). Fig. 2 (b) shows that “Base-
line” cannot handle this kind of nonstationarity in the noise signal.
The enhanced signal by the system still contains significant noise
power in speech segments. On the contrary, with the sequen-
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tial noise parameter estimation, the enhanced signal by “Percep-
tual” has reduced noise power in these speech segments (shown
in Fig. 2 (¢)).

Fig. 2. Example of spectrogram of the signals. (a) Noisy signal
( noise is non-stationary and the SNR is 0.8dB.) (b) Enhanced
speech by Wiener filter. (c) Enhanced speech by perceptual filter
with noise statistics estimated by the proposed algorithm.

Note that some higher frequency components of speech seg-
ments are attenuated more strongly than “Baseline” (see segments
between 1.4s and 2.0s). Since Eq. (3) assumes small speech and
noise variance, lack of speech energy in these higher frequency
parts may cause unreliable estimation of noise parameter. As a
result, the filter coefficient H;(¢) in Eq. (11) may unnecessarily
small.

Recognition Results: Since the speech recognizer is more sensi-
tive to speech distortion, the proposed speech enhancement scheme
utilizes a flooring scheme with a proper selection value for £ in
Eq. (12) (in this work, &2 = 0.05). Speech models for recogni-
tion had 10 states and 3 Gaussian mixtures in each state. Training
utterances were clean. For feature extraction, twenty-six filter
banks were used. The features were 39-dimensional MFCC + CO
and its first- and second-order derivatives.

Recognition accuracy improvements obtained with the pro-
posed algorithm is summarized in Table 1 along with relative er-
ror rate reduction over that achieved by Wiener filtering. In high
SNR conditions (SNR > 10), properly selected flooring parame-
ter £ in Eq. (12) in perceptual filter prevents speech from much
distortion. This results in relatively higher recognition accuracy
than that by traditional Wiener filter. For example, there was a
26% averaged relative error rate reduction (AERR) by perceptual
filter over traditional Wiener filter in 20dB noise. With the de-
crease in SNR, this gain in perceptual filtering becomes marginal,
reflecting the difficulty for sequential noise parameter estimation
with low SNR environments. The benefit by the sequential noise
estimation is apparent in slowly varying nonstationary noise such
as Babble noise. Babble noise has an averaged spectrum similar
to speech spectrum, making a normal VAD hard to discriminate it
from speech. In the noise, “Perceptual” made 27% averaged error
rate reduction (AERR) over traditional Wiener filtering. Perfor-
mance in Car noise by the perceptual filter is also significant.

Table 1. Word Accuracy (in %) in Aurora 2 database achieved by
the proposed enhancement system (5; = 0.9 and p = 0.995) in
comparison with a system, denoted as Baseline, without the noise
parameter estimation method.

Proposed algorithm

Subway | Babble Car Exhibition || AERR
Clean 99.39 99.28 | 99.55 99.02 65.5%
20 dB 98.29 98.57 | 99.03 98.30 26.3%
15dB 96.88 97.84 | 98.06 96.99 14.7%
10dB 94.07 9493 | 95.57 92.85 10.1%
5dB 88.13 88.00 | 89.65 85.64 13.2%
0dB 7543 7247 | 77.13 73.20 11.3%
-5dB 55.54 51.54 | 59.42 57.28 0.1%

| AERR [ 157% | 27.6% [ 373% | 16.0% | |

4. CONCLUSIONS

We have presented a speech enhancement algorithm that com-
bines a sequential maximum likelihood estimation of the time-
varying noise parameter (time-varying mean vector of the noise
spectrum) and perceptual filtering. Estimated noise parameter is
used to design a perceptual filter, which employs human audi-
tory properties. The speech enhancement algorithm works under
time-varying noise conditions. We have conducted experiments in
varies noise and SNR situations to verify that the method can im-
prove performances in speech signal enhancement and compared
it to alternative approaches.
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