
SPHERICAL HARMONIC ANALYSIS OF EQUALIZATION IN A REVERBERANT ROOM

Terence Betlehem and Thushara D. Abhayapala

National ICT Australia, Department of Telecommunications Engineering
RSISE, Australian National University

Canberra, ACT, 0200, Australia
Email: [Terence.Betlehem, Thushara.Abhayapala]@anu.edu.au

ABSTRACT
In this paper, we investigate the performance of acoustic
equalization in reverberant environments. We first high-
light an efficient general representation of a sound field us-
ing spherical harmonics. We then use this representation to
develop a concise closed-form expression for robustness of
equalization to sensor movement. This expression is used
(i) to characterize equalization performance for a general
class of non-isotropic sound fields and (ii) to quantify the
improvements to equalizer robustness that can be obtained
by using a directional microphone. The approach used here
does not use any of the assumptions of statistical acoustics,
but instead exploits the inherent properties of a sound field
as described by the wave equation.

1. INTRODUCTION

A problem of hands-free telephony is acquiring undistorted
speech in reverberant environments when a microphone
cannot be located near the source. A solution is to use
acoustic equalization, where signal distortion is removed
with an appropriate inverse filter.

Unfortunately if the source and sensor positions are not
fixed, acoustic equalization is difficult. The sound field
varies greatly from point to point in a typical room [1].
Even a change in the source or microphone position of a
few tenths of a wavelength creates a large variation in the
room channel response and large degradation in equalized
output [2, 3, 4]. Techniques have been suggested to combat
this robustness problem [5, 6, 7].

The multi-channel case proposed in [7] shows promise.
However, as the robustness analysis in this case was based
on the single-channel analysis of Radlovic̀ et al. [2], results
are restricted to the assumptions of statistical room acous-
tics and a first order approximation only valid in moderately
reverberant rooms. Further, the mean square error criterion
used in [2] is overly-conservative as it is sensitive to the time
delay of the equalizing filter.

In this paper, we derive an expression for a new perfor-
mance criterion, not prone to the above problems. This

criterion describes the robustness of magnitude response
equalization in any sound field, and with a microphone of
arbitrary directivity pattern. To do this, we exploit the modal
decomposition of a sound field.

Below we present a deterministic approach. This ap-
proach is sophisticated enough to capture the important ef-
fects of the geometric parameters of the sound field, but is
simple enough to yield a concise closed-form expression
and permits understanding and generalization of geometry
on performance.

2. MODAL DECOMPOSITION OF A SOUND FIELD

Denote the frequency domain signal received at an omnidi-
rectional sensor at position x as f(x; k) where k � ω/c is
the wave number, ω is angular frequency and c is the speed
of sound in air. Define a spherical region Ω ∈ R

3 centered
about the origin that excludes all sound sources. A gen-
eral representation of the sound field inside Ω that obeys the
Helmholtz wave equation is [8]:

f(x; k) =
∑
n,m

αnm(k)jn(kx)Y m
n (x̂) (1)

where the summation
∑

n,m denotes
∑∞

n=0

∑n
m=−n,

αnm(k) are coefficients representing the wave field, jn(·)
are the spherical Bessel functions, x � ‖x‖, x̂ � x/‖x‖
and Y m

n (·) are the spherical harmonic functions

Y m
n (x̂) �

√
2n + 1

4π

(n − m)!
(n + m)!

Pm
n (cos θ)eimφ,

θ and φ are the elevation and azimuthal angles of x̂ respec-
tively, and Pm

n (·) are the associated Legendre functions of
the first kind. Spherical harmonic functions form an or-
thonormal set spanning the unit spherical shell S

2 = {x :
‖x‖ = 1} and satisfy the orthogonality property,

∫
S2

Y m
n (x̂)Y m′

n′ (x̂) ds(x̂) = δmm′δnn′ , (2)
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where (·) is the complex conjugation operator and ds(x̂)
is the spherical surface element at x̂. The basis functions
jn(kx)Y m

n (x̂) are known as modes.
Equation (1) provides an efficient representation of a

sound field. Due to the bandpass character of the spheri-
cal Bessel functions, it specifies the field over a spherical
region centered about the origin with the minimum number
of parameters [9].

3. SOUND FIELD IN A ROOM

In this section, we provide a framework for describing the
sound field in a reverberant room.

3.1. Direct and Reverberant Fields

Separate the field f(x; k) into two parts, a direct field
fD(x; k) and reverberant field fR(x; k), with correspond-
ing field coefficients α

(D)
nm and α

(R)
nm respectively,

f(x; k) = fD(x; k) + fR(x; k). (3)

By linearity of (1) then,

αnm = α(D)
nm + α(R)

nm. (4)

For brevity, the dependence on k has been suppressed. Let
the source be placed at position y ∈ R

3/Ω. The direct field
component is that part of the field arriving directly without
reflection,

fD(x; k) =
e−ik‖y−x‖

4π‖y − x‖ . (5)

The direct field coefficients α
(D)
nm can be found with the

spherical harmonic expansion of the direct part [8],

e−ik‖y−x‖

4π‖y − x‖ = −ik
∑
n,m

h(2)
n (ky)Y m

n (ŷ)×

jn(kx)Y m
n (x̂), y > x (6)

where h
(2)
n (·) is the spherical Hankel function of the second

kind. Comparing (1) with (6),

α(D)
nm = −ikh(2)

n (ky)Y m
n (ŷ). (7)

The reverberant field is specified completely through the re-
verberant field coefficients α

(R)
nm , defined by

fR(x; k) =
∑
n,m

α(R)
nm jn(kx)Y m

n (x̂). (8)

The relative magnitude of the direct and reverberant field
components is measured by the direct-to-reverberant ratio.
This is defined as the ratio of the energy density of the direct
part to the energy density of the reverberant field. From

θc

(a) (b) (c) (d)

Fig. 1. Configurations of reverberant sources around a
sphere. (a) Isotropic shell. (b) Conical sector with half cone
angle θc. (c) Spherical slice. (d) Circular ring.

synthesis equation (1), the direct-to-reverberant ratio at the
origin reduces to,

γ0 �
∣∣∣∣fD(0; k)
fR(0; k)

∣∣∣∣
2

=

∣∣∣∣∣α
(D)
00

α
(R)
00

∣∣∣∣∣
2

. (9)

3.2. Reverberation Modelling

An arbitrary wave field inside a source-free region can be
generated by a set of sources arranged on the region bound-
ary [10]. This motivates us to define of the class of wave
fields generated by distributing attenuated copies of the
source, here called reverberant sources over a spherical
shell with radius R. Defining the unit sphere B ⊂ S

2, the
reverberant field fR(x; k) is calculated by:

fR(x; k) = σR

∫
B

e−ik‖x−Rv̂‖

4π‖x − Rv̂‖ ds(v̂), (10)

where σR controls the energy density of the reverberation
and R is the radius of the shell. Applying (6), we can show
the reverberant field coefficients α

(R)
nm to be

α(R)
nm = κn

∫
B

Y m
n (v̂) ds(v̂), (11)

where κn � −ikσRh
(2)
n (kR).

Below are presented several geometric configurations of
reverberant sources shown in Fig. 1. The associated coeffi-
cients α

(R)
nm are summarized in Table 1.

3.2.1. Isotropic Shell

For the isotropic shell, we equally distribute a continuum of
reverberant sources over a spherical shell (Fig. 1(a)). This
field is composed of only one mode, j0(kx)Y 0

0 (x̂). Here the
reverberation arrives at the sensor with equal contributions
from each direction. The isotropic shell is hence the deter-
ministic analog to the 3D isotropic field [11], and describes
the reverberation best in rectangular rooms with homoge-
neous wall parameters.
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Configuration α
(R)
nm

Sphere 4πκnΛ0
0 δm0δn0

Conical sector 2πκnΛ0
n sin θcP

−1
n (cos θc) δm0

Spherical slice 2∆φ κnΛm
n j0(m∆φ)

∫ 1

−1
Pm

n (u)du,

Circular ring 2πκnΛ0
nPn(0) δm0

Table 1. Reverberant field coefficients for various geome-

tries; κn � −ikσRh
(2)
n (kR); Λm

n �
√

2n+1
4π

(n−m)!
(n+m)! .

3.2.2. Spherical Sector

Uniformly distribute a continuum of reverberant sources
over the conical sector Bcone = {(R, θ, φ) : 0 < θ <
θc, 0 < φ < 2π} (Fig. 1(b)) and the spherical slice Bslice =
{(R, θ, φ) : 0 < θ < π,−∆φ < φ < ∆φ} (Fig. 1(c)).
The spherical sector is useful for describing non-spherically
symmetric fields where the reverberation comes only from a
certain range of directions. Fields with directional character
provide a simple model for room inhomogeneities.

3.2.3. Circular Ring

A circular ring is the deterministic equivalent of the 2D
isotropic case, for microphones restricted to the plane of
the ring. Let the ring be centered about the origin in the xy-
plane Bring = {(R, θ, φ) : θ = π

2 , 0 < φ < 2π} (Fig. 1(d)).
The circular ring model describes the reverberant field best
in rooms with a highly sound-absorbing floor and ceiling.

4. DUAL INTERPRETATION

Consider a microphone with a directional response D(v̂; k)
depending on direction v̂ and wave number k, with spheri-
cal harmonic expansion,

D(v̂; k) =
∑
n,m

ξnm(k)Y m
n (v̂). (12)

In the above reverberation model, we can show that for x �
R the output of this sensor is given by

fR(x; k) = σR

∫
B

D(v̂; k)
e−ik‖x−Rv̂‖

4π‖x − Rv̂‖ds(v̂).

Comparing with (10), we see the output signal of the direc-
tional sensor,

DB′(v̂; k) =
{

1, v̂ ∈ B
′,

0, otherwise,

in a isotropic shell is equal to that of an omnidirectional
sensor in a shell with geometry parameter equal to B ∩ B

′.
Further, a microphone with arbitrary D(v̂; k) in a field gen-
erated by the isotropic shell geometry can be shown to be
equivalent to an omnidirectional microphone in a field with
coefficients κnξnm.

5. ROBUSTNESS OF EQUALIZATION

We now develop a measure of robustness of magnitude re-
sponse equalization to changes in sensor position. To quan-
tify this, define the equalizer error criterion ε as follows. Let
H(k) be the frequency response of a zero-forcing equal-
izer attached to a sensor. Choosing the origin at the sen-
sor, H(k) = 1/f(0; k). If the sensor is then moved to
position r, the source-to-sensor transfer function becomes
G(k) = f(r; k). The magnitude square error in equalizer
output due to movement of the sensor is |G(k)H(k)|2 − 1.
Define the average equalization error ε(r; k) as:

ε(r; k) =
1
4π

∫
S2

(∣∣∣∣f(r; k)
f(0; k)

∣∣∣∣
2

− 1
)

ds(r̂). (13)

This error measures the average error in equalizer output
for a movement of distance r � ‖r‖. Exploiting the modal
expansion, we derive an expression for ε in any sound field
f(r; k) given by the synthesis formula (1).

Robustness Expression
The average equalization error due to movement of a sensor
by a distance r in a sound field f(r; k) is given by:

ε(r; k) =
∑
n,m

∣∣∣∣αnm

α00

∣∣∣∣
2

[jn(kr)]2 − 1, (14)

where αnm are the modal coefficients of the sound field.

This expression is obtained by substituting (1) into (13), and
applying orthogonality property (2). Although the sensor
has been placed at the origin to simplify analysis, this by no
means limits the usefulness of the criterion.

6. EXAMPLES

We now evaluate the average equalizer error for several field
geometries of Section 3. We quantify equalization perfor-
mance with the zone of equalization, the spherical region in
which ε does not exceed −10dB. The parameters used were
c = 342 m/s, y = 3m, R = 8m and ω = 2πkHz.

Fig. 2(a) shows a plot of the error curves for an omnidi-
rectional sensor in the field created by an isotropic shell of
reverberation, for several values of γ0. Here the ’reverber-
ation only’ case predicts a similar robustness curve to that
in [2]. The ’reverberation only’ zone of equalization has a
radius of 0.1λ.

Fig. 2(b) compare the error curves for the field created by
the conical sector of half cone angle θc and spherical slice
of width 2∆φ. Angle ∆φ was chosen to make γ0 the same
as a corresponding conical sector case. The direct source
has been positioned in the center of the conical sector and
spherical slice (at (0, 0, y) and (y, 0, 0) respectively).
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Fig. 2. Average equalization error for (a) the isotropic shell, (b) the conical sector and spherical slice and (c) various second
order microphone designs (in this case R = 12.49m) in an isotropic shell.

The conical sector and spherical slice are shown to have
approximately equal equalizer robustness. However with
different R and y, the conical sector is on average better. For
small θc the sources on the conical sector are more tightly
concentrated, producing a field with a greater coherence.

Fig. 2(b) allows estimation of the improvement attainable
by cutting a proportion of the reverberation in a room. For
the half sphere configuration the radius of the zone of equal-
ization increases by 30%, and for the 1/4 sphere, by 110%.

Finally, we exploit the dual interpretation to quantify the
robustness for the second order directional microphones de-
signs of [12] in an isotropic shell. Fig. 2(c) shows improve-
ment can be gained by increasing microphone directivity.

7. CONCLUSION

Modal analysis has been used to develop a concise closed-
form expression for the robustness of magnitude response
equalization to sensor movement in any sound field. We
characterized the robustness in several sound fields to show
the dependence of the zone of equalization on the geometric
parameters of the field. A dual interpretation of a sound
field has extended analysis to directional sensors, showing
a dependence of performance on sensor directivity.1
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