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ABSTRACT 

This paper studies the performance of automatic phone 
segmentation from two viewpoints: (1) temporal precision and 
(2) effect on the naturalness of synthetic speech. The absolute 
error of the phone onset time for the best 90% and worst 10% 
were 4.6 ms and 25.9 ms, respectively. These values are 
comparable to discrepancies among human labelers. As the 
result of perception tests in which naturalness was pair-
compared between synthetic speeches generated from hand-
segmented data and from auto-segmented data, it was found that 
the latter is statistically inferior. 

1. INTRODUCTION 

Recent concatenative speech synthesizers rely on large amount
of phone-segmented speech corpora to realize high-quality 
synthetic speech. If it has to be done by humans, phone 
segmentation is labor-intensive work that requires large costs 
and a long time. According to the authors’ experiences, the 
speed of phone segmentation by humans is almost 130 times 
real-time. For recent TTS systems requiring a speech corpus of 
10 or more hours, hand-segmenting the entire corpus is 
economically impractical. Therefore, we should suppose a 
situation where only fully automatically phone-segmented 
corpora are available. Although automatic speech recognition 
techniques such as the HMM (Hidden Markov Models) enable 
precise automatic phone segmentation, it is believed that the 
precision is inferior to manual segmentation. This lack in 
precision can become a source of naturalness degradation.  

Numerous studies have been made on automatic 
segmentation of phones. Almost all of the recent studies are 
based on forced phoneme recognition using the HMM, with a 
few exceptions that are based on the DTW technique [1]. A 
typical performance reported by Ljolje et al. [2] is that more 
than 80% of automatically segmented phone boundaries fall 
within 5 ms error when speaker-dependent HMMs are used. 
They also reported that context-independent models 
outperformed context-dependent models and that embedded 
training degrades the temporal precision. Their references for 
segmentation errors were manually segmented phone labels. 
However, the relationship between temporal errors and 
naturalness of synthesized speech is not always clear. In this 
respect, Makashay et al. [3] reported an encouraging result: they 
conducted a perception test to find that automatic segmentation 
can produce more natural synthetic speech. However, it is not 
always apparent that their result is applicable to any kind of 
concatenative TTS since the quality of synthetic speech is also 

dependent on many other factors such as phone sets, languages, 
speakers of the corpora, corpus sizes, and segment selection 
algorithms. 

Therefore, in this paper the authors evaluate segmentation 
precision in the context of our TTS developed for Japanese. 
This paper is organized as follows. In section 2, the consistency 
of phone boundaries between human labelers is analyzed in 
order to clarify the upper bound of the performance of 
automatic phone segmentation. In section 3, optimal settings of 
HMM training are investigated. In section 4, perception tests 
are conducted in which naturalness is pair-compared between 
synthetic speeches generated from manually labeled data and 
from automatically labeled data. Section 5 summarizes the 
paper. 

2. CONSISTENCY BETWEEN HUMAN LABELERS 

When human labelers time-align phones of an identical speech 
data, they do not always agree with each other on phone onset 
times. Therefore, we conducted an experiment to quantitatively 
clarify the degree of inconsistency among human labelers. 

The speech data is a set of 50 Japanese sentences uttered by 
a male professional narrator in an anechoic room. The speech 
was digitized at a sampling frequency of 48 kHz with 20-bit 
precision. The total number of phonemes is 3377, and the total 
duration is 237 seconds. 

The speech data was first automatically segmented into 
phones according to phonemic transcription, and then they were 
simultaneously given to four human labelers. They corrected the 
phonetic transcription and phone onset times based on visual 
and audio inspection using an in-house graphical tool. They 
were requested not to discuss specific cases during the 
segmentation work. 

Table 1 shows absolute errors of segment onset times for 
phone classes. The error here is defined as the time difference 
between the farthest result and the mean of results from 
different labelers for the same phone segment. Table 1 shows 
that disagreement is small for plosives and flaps, while it is 
large for silences (i.e. closures and pauses), voiced fricatives, 
and semivowels. Although the overall disagreement for vowels 
looks rather small, error lengths differ largely depending on the 
preceding phones: they are small for unvoiced plosives, 
unvoiced fricatives, and silences, while they are large for nasals, 
semivowels, and vowels. Short and long pauses have the largest 
maximal errors. This is because it is not easy in many cases to 
determine the end of voicing from waveforms, which is also 
true for other voiced phones. 
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Table 1: Errors of manual segmentation
Mean Abs. Err. (ms)

Phonetic Class Num. Best
90%

Worst
10%

Max
(ms)

Unvoiced plosives 345 0.7 6.8 37.5
Flaps 125 2.1 11.8 22.2
Unvoiced affricates 70 2.3 17.8 32.0
Voiced plosives 181 2.9 15.1 27.2
Devoiced vowels 2 3.2 12.5 12.5
Vowels 1370 3.2 17.6 35.0
Unvoiced fricatives 200 3.6 20.9 39.2
Nasals 328 4.2 19.7 38.2
Short closures 353 4.9 12.8 19.5
Long closures 29 5.8 16.3 18.2
Voiced fricatives 48 7.4 17.6 21.5
Vowel tails 3 9.6 19.8 19.8
Short pauses 109 9.5 32.3 58.0
Long pauses 50 10.9 37.1 55.2
Semivowels 78 11.9 28.5 32.2
All phonemes 3291 3.5 19.5 58.0

Table 2: Errors of automatic phone segmentation
Mean Abs. Err. (ms)

Phone Class Num. Best
90%

Worst
10%

Max
(ms)

Unvoiced plosives 2815 2.4 10.9 117.3
Flaps 1226 3.5 17.2 114.8
Vowel tails 768 3.9 16.2 50.0
Unvoiced affricates 514 4.3 16.6 28.4
Short closures 3146 4.4 17.2 104.4
Devoiced vowels 78 4.7 18.8 29.4
Vowels 12440 4.7 27.5 305.1
Long closures 381 4.9 16.8 35.4
Nasals 3020 5.0 28.4 145.7
Voiced plosives 1715 5.1 21.7 123.7
Unvoiced fricatives 1890 5.3 28.4 122.1
Short pauses 923 5.6 26.9 68.8
Voiced fricatives 563 6.3 26.5 55.0
Semivowels 865 8.1 34.9 90.7
Long pauses 501 14.2 55.0 126.2
All phonemes 30845 4.6 25.9 305.1

3. AUTOMATIC PHONE SEGMENTATION

3.1. Speech data

The training data consists of 2259 sentences uttered by a male
professional narrator who uttered the speech data used in the
previous section. The content of the sentences is newspaper
articles and travel conversations. The total number of phones
and the total duration are 188674 and 3.69 hours, respectively.

The test data consists of 501 phonetically balanced
sentences uttered by the same narrator. The total number of
phonemes and the total duration are 30344 and 0.61 hours,
respectively.

The training and test data were hand-segmented by the
human labelers who participated in the previous experiment.
Although each utterance was segmented once by a labeler, it
was revised once or twice for precision and consistency.

3.2. Acoustic analysis

The speech data were first down-sampled to 16 kHz, pre-
emphasized with a coefficient of 0.97, and windowed with an 11
ms-long Hamming window at every 6 ms. The windowed signals
were then parameterized into a 26 component vector consisting
of 12th order MFCC (Mel-Frequency Cepstrum Coefficients),
MFCC, log energy, and  log energy.  MFCC and  power
were not used because they were shown to be ineffective for
temporal precision of phone segmentation by a preliminary
experiment. Acoustic parameterization and HMM training were
conducted using the HTK [4], which is a standard toolkit for
automatic speech recognition.

3.3. Precision of automatic phone segmentation

Monophone HMMs were trained based on the standard Baum-
Welch maximum likelihood estimation using the training data
described above. Embedded training was not conducted, that is,
only initial training was conducted where phone boundaries
were fixed to manually determined positions. HMMs consist of
Gaussian distributions with diagonal covariances. The total

number of states and Gaussian distributions are 225 and 954, 
respectively. The number of states and mixture components per
HMM differ depending on phones: the numbers were
experimentally optimized as described in the next section. The
states are connected in a left-to-right network without skip
transitions. An explicit duration modeling is not incorporated.

The HMMs were used to segment the test data. The phone
sequences were fixed to manually determined ones. Table 2
summarizes absolute errors of segmentation with reference to 
manually segmented reference data. The order of phone classes
in this table is similar to that of Table 1: unvoiced plosives and
flaps have relatively small errors while silences and voiced
fricatives have large errors. The reason why vowels have the
large maximum is that their amplitudes decrease sometimes
very gradually at utterance ends. The dependency of errors on 
the preceding phone was also similar to the consistency
between human labelers.

The grand mean for the best 90% in Table 2 is 31% larger
than that in Table 1. Although manual segmentation is surely
more precise than automatic segmentation, it is also true that the
both precisions are almost comparable. This implies that further
improvement of precision cannot be verified easily, even if it
exists, since the reference is not sufficiently reliable. The
maximum errors, on the other hand, are substantially larger than
those in Table 1.

3.4. Optimization of training conditions

Optimizations were conducted on several training conditions to 
improve segmentation precision. The baseline HMMs are a set
of 3-state monophones with 5 mixture components each. Silence
HMMs have one state. The total number of states and Gaussian
distributions are 192 and 995, respectively. The segmentation
error for the baseline is shown in Table 3 as condition (1).

3.4.1. Embedded training

Embedded training was conducted using the baseline HMMs as
seed models. As shown in Table 3(2), the segmentation
precision deteriorated as iteration proceeded. This is because the
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training in this case is based on the ML (Maximum Likelihood)
criterion, while the reference data is determined based on the
temporal precision criteria: as iteration proceeds, the effect of
the ML criterion increases.

3.4.2. Context-dependent modeling

First, biphone HMMs were trained using the baseline HMMs as
seed models. The phonetic contexts considered were left phones
for vowels and right phones for consonants. A total of 388
biphone HMMs with 10 or more training observations were used
for a segmentation experiment, resulting in use of biphone
HMMs for 85.3% of phones in the test data. As shown in Table
3(3), no improvement was obtained. Likewise, no improvement
was obtained by triphone modeling as shown in Table 3(4).

Second, following the standard training procedure, tied-
state triphone HMMs were trained whose total number of
Gaussian distributions was 785. As shown in Table 3(5), the
precision degraded substantially compared to the baseline. This
is because embedded training is involved in the procedure of
the training of tied-state HMMs by the design of the HTK.

3.4.3. Number of mixture components and states

First, the number of mixture components per state was optimized
for each phone HMM by the hill-climbing algorithm. An
optimal number of mixture components was searched in a linear
manner based on the segmentation errors for a part of the
training data. This procedure was run through by turns for the
entire set of the phone HMMs until no improvement is obtained.
The mixture number was set equal for all of the states in a phone
HMM. As shown in Table 3(6), the precision slightly improved.

Second, the number of states per HMM was optimized
likewise in addition to the mixture number optimization. As
shown in Table 3(7), the precision improved substantially in 
this case. This is probably because the state number works as a
restriction on phone duration in place of duration models,
which were not incorporated in our experiments.

3.4.4. Amount of training data 

Monophone HMMs were trained using reduced training data.
The precisions are shown in Table 3(8) for several reduction

rates. Degradation of precision is not found even for 1/8
reduction.

Table 3: Optimization of training conditions
Abs. Err. Mean (ms)

Conditions Best
90%

Worst
10%

(1) Baseline 5.7 32.1
iteration=1 6.3 33.7
iteration=2 6.8 34.9
iteration=3 7.1 35.6
iteration=4 7.4 36.6
iteration=5 7.6 37.1

(2) Embedded training

iteration=10 8.1 39.6
(3) Biphone 5.8 32.6
(4) Triphone 5.9 33.5
(5) Tied-state triphone 7.2 37.8
(6) Mixture number optimization 5.4 31.1
(7) State number optimization 4.6 25.9

1/2 5.7 32.2
1/4 5.7 32.0(8) Training data reduction
1/8 5.6 32.1

3.5. Disambiguation of pronunciation variation

Conversion from phonemic transcription into a phone sequence
is subject to ambiguities due to pronunciation variations. In the
case of Japanese, important pronunciation variations include
vowel devoicing, vowel elongation, and short pause insertion. It
is desirable that such ambiguities be resolved automatically.

Therefore, we conducted a segmentation experiment in
which ambiguities in a phone sequence are represented as
several paths in a phone HMM network. The best phone
sequence is selected on the ML basis. As a result, accuracies of
66.2%, 94.9%, and 96.7% were obtained for vowel devoicing,
vowel elongation, and short pause insertion, respectively, where
accuracy is defined as 100 (“total number of samples” – 
“number of errors”)/ “total number of samples”. The accuracy
for vowel devoicing is quite low: some new acoustic
information other than MFCC and power, such as F0, is
necessary for improvement.

4. PREFERENCE TEST FOR HAND-SEGMENTED VS.
AUTO-SEGMENTED SPEECH CORPORA 

4.1. Speech stimuli and procedure

Three perception experiments were conducted to directly
evaluate the effect of segmentation errors on the naturalness of
synthetic speech. The speech stimulus was a pair of two
synthetic speech components of the same sentence generated
from a hand-segmented or from an auto-segmented speech
corpus. The inventory of waveform segments is the training data
in Section 3, except for the second experiment. The HMMs used
for auto-segmentation is Table 3(7) except for the third 
experiment.

The two components in a pair were sorted in random order.
For each perception experiment, 53 pairs of different sentences
were prepared. A set of stimuli was presented to listeners twice
through headphones in a soundproof room. In the second
presentation, the order of the speech samples in each pair was
reversed. Nine listeners participated in the experiments. They
were requested to answer which one in a pair seemed more
natural than the other.

4.2. Results

In the first experiment, hand-segmentation and auto-
segmentation were compared. The result is shown in Fig. 1(1).
Apparently, the hand-segmentation is superior.

In the second experiment, the size of the auto-segmented
corpus was doubled. The result (Fig. 1(2)) implies that doubling
the size of a corpus is equivalent to conducting hand-
segmentation in terms of naturalness.

In the third experiment, the effect of embedded training was
assessed. The HMMs for the “Auto-embed” condition were
made by conducting embedded training for 10 iterations using
the HMMs in Table 3(7) as seed models. The result (Fig. 1(3))
shows that embedded training neither harms nor enhances the
naturalness, although it certainly increases segmentation errors.
In other words, the difference in segmentation errors between
the two conditions has no effect on the naturalness.
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4.3. Analysis

The results of the preference test shows that manual
segmentation contributes to improving the naturalness of
synthetic speech. In this sub-section let us analyze the
relationship between the length of segmentation errors and the
degree of naturalness degradation.

Table 4 summarizes mean absolute errors and costs of
segment selection for different methods of phone segmentation
shown in Fig. 1. The errors were calculated for segments
comprising the stimuli. The segments were extracted from the
waveform inventory that was also used for the training of the
HMMs: mean absolute errors in this table are for a part of the
training data of the HMMs (closed condition). The grand means
of absolute errors for the entire training data were 4.2 ms (best
90%) and 26.1 (worst 10%) for “Auto-init” condition and 5.1 
ms (best 90%) and 29.3 ms (worst 10%) for “Auto-embed”
condition, respectively. The number of segments for “Auto 2”
condition is almost half of the other conditions since half of the
segments were selected from the augmented part of the
waveform inventory for which reference segmentation is not 
available. The cost, which guides the selection of an optimal
sequence of waveform segments, is calculated from acoustical
or perceptual distances between targets of synthesis and
candidates of segments [5].

The mean absolute errors show in Table 4 are greater or
equal to those for the entire waveform inventories, which
indicates that our segment selection algorithm does not have an
ability to filter out segments with a large segmentation error. In
other words, the cost function does not respond to the
difference of the segmentation errors between “Hand” and
“Auto-init”: costs for these conditions are almost the same.

The perceptual experiment showed that “Auto-init” and
“Auto-embed” are equivalent in terms of naturalness. This is
probably because their mean absolute errors and costs are
almost the same. It should be also noted that the mean absolute
error of “Auto-embed” under the closed condition is smaller
than that under the open condition shown in Table 3(2).

Comparison between “Hand” and “Auto 2” conditions
suggests that naturalness degradation caused by segmentation
errors was recovered by a substantial decrease in costs that is a 

result of improvements in several factors affecting segment
selection such as prosodic parameters and compatibility of
phonetic contexts.

Fig. 1: Results of preference tests for speech samples that
were synthesized from manually vs. automatically
segmented speech corpora.

(3)

(2)

(1)
Hand (55.3%)

Auto (44.7%)

Hand (48.7%)

Auto 2 (51.3%)

Auto-init (49.3%)

Auto-embed (50.7%)

95% confidence interval

Table 4: Segmentation errors for different segmentation
methods.

Mean Abs. Err. (ms)Segmentation
condition

Number
of seg. Best 90% Worst 10%

Cost
ratio

Hand 811 0.0 0.0 1.00
Auto-init 846 4.9 31.2 1.05
Auto 2 395 4.9 27.6 0.84
Auto-embed 816 5.3 31.8 1.08

5. SUMMARY

This paper studied the performance of automatic phone
segmentation from two viewpoints: (1) temporal precision, (2)
effects on the naturalness of synthetic speech. First, consistency
between human labelers was measured. The absolute error of the
phone onset time for the best 90% and worst 10% were 3.5 ms
and 19.5 ms depending on phone classes.

Second, precision of automatic phone segmentation was
evaluated. The absolute error of the phone onset time for the
best 90% and worst 10% were 4.6 ms and 25.9 ms, respectively,
and these values are comparable to discrepancies among human
labelers. By optimizing training conditions, it was also shown
that embedded training and context-dependent modeling
degrade the segmentation precisions.

As the result of a perception test in which naturalness was
pair-compared between synthetic speech generated from hand-
segmented data and from auto-segmented data, it was found that
there is a statistical difference. This difference can be
compensated by doubling the corpus size.
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