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ABSTRACT

Data scarcity in corpus-based intonation modelling for TTS ap-
plications is addressed. Multiple model dictionaries are proposed
to predict patterns not found in the training corpus. A grouping
strategy is proposed to improve models of classes with not enough
number of training samples. An experimental study of this strategy
shows that better pitch profiles can be predicted this way.

1. INTRODUCTION

Improvements in the naturalness of TTS systems are still an is-
sue, specially because new application fields are emerging which
require fast adaptation to new speaker voices and speaking styles
and a better set of prosodic rules. Although rule based systems can
generate high quality prosody, they are difficult to adapt to chan-
ging environments. As far as intonation modelling is concerned,
corpus based systems could provide the best engineering solution
for these challenges. One of the most important problems of cor-
pus based systems is the scarcity of data available in the corpus. In
this work, we provide a strategy to cope with this problem which
allows improving intonation modelling following the methodology
already presented in previous works [1, 2, 3].

Models of intonation attempt to find out the relationship bet-
ween a set of linguistic prosodic features (LPFs) of the messa-
ge and pitch contours (characterised by sets of parameters like in
TILT[4] or Fujisaki models[5]). Different approaches to represent
intonation and to model the relationship between acoustic and lin-
guistic information can be found in state of the art techniques (as
reviewed in [6]). Scarcity problems arise when corpora don’t co-
ver all the possible combinations of LPFs (few or no sample for a
given combination). Under these situations, it is required to predict
intonation for LPFs sets which are not properly modelled if they
are at all. Of course, there is still a possibility to redesign a corpus
and include more samples. However, it is not allways possible to
design and adquire corpora which include the huge number of re-
quired combinations. As an example, there are around 27 millions
of possible combinations of LPFs reported in [7] (although some
of them are obviously absurd) while the corpus used had less than
3000 different combinations.

Despite of its importance, it is not always easy to find refe-
rences in the bibliography which describe strategies to cope with
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this problem. Usually, this scarcity is to be avoided delivering bet-
ter parameter selection procedures for the classification algorithms
(neural networks, regression tress, lineal regression, ...) in those
special cases where there are not enough training data or anyone at
all. In spite of this, there are situations where the number of possi-
ble combinations of LPFs which are not properly modelled could
represent a high percentage and the naturalness of predicted pitch
contours could be highly compromised if a simplistic solution is
provided.

In this communication, we will separately face two different
problems associated with the scarcity of data: combinations of
LPFs with no samples in the corpus and combinations with very
few representative samples.

We propose using multiple dictionaries of intonation models
to solve the first of these problems. This strategy will be compared
with others we already tested in previous works (default pitch pat-
terns [1] and decision trees[3]). We will see that prediction errors
can be lowered significantly with the new approach described here.

When the amount of observations of a given class is very li-
mited, the problem is that the associated model won’t generalize
properly. We propose a class aggregation technique to group toget-
her samples belonging to different classes in order to increase the
generalization capabilities of the models. We will experimentally
show that this aggregation clearly improves the prediction capabi-
lities of the learned models.

We will start summarizing our intonation modelling methodo-
logy. Then we describe an experimental procedure to implement
multiple dictionaries and the class grouping procedure. In the re-
sults section, we will discuss the benefits of applying these strate-
gies. Finally, some conclusions and proposals of future work are
presented.

2. INTONATION MODELLING AND REPRESENTATION

The intonation modelling methodology used in this work is sche-
matically depicted in Figure 1. Linguistic analysis of text brings
intonation units and provides the set of LPFs associated with each
of them. Pitch contours are parameterised using Bézier functions
(figure 2). In this way, each intonation unit in the corpus is repre-
sented by the set of intonation parameters derived from the control
points of the Bézier fitting function and its set of LPFs (see [1] for
details).

During the modelling phase, classes of intonation units are
built according to some classification criterion and the statistical
distributions of the four control points of the Bézier function fit-
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Fig. 1. Intonation modelling and generation of synthetic intona-
tion.

ting each intonation unit are taken as generative models of the class
(see figure 2). We propose to use the set of LPFs as the only grou-
ping criterion of intonation units in a class. Two intonation units
are grouped together into the same class if they share the linguis-
tic prosodic features. A dictionary of models of intonation can be
built this way. Every combination of LPFs provides an identifier
key to lookup a matching model in the dictionary. Each model in
the dictionary is represented by the statistical distribution of the
intonation profile parameters computed from the corpus for the gi-
ven class.

In the generation phase, a pitch contour is drawn for each in-
tonation unit, using the statistical distributions of the associated
model. Segmentation and labelling of the intonation units is do-
ne separately within the linguistic module of the generator. This
methodology was showed to be adequate by means of objective
and subjective evaluations, which provided intelligibility results
comparable to the ones of other approaches and lead to acceptable
naturalness qualifications (see [2] for details).

Synthetic pitch contours are generated from the dictionary of
classes. Sentences are split into intonation units. We obtain the
identifier of the class of every stress group from its LPF. Smooth
pitch contours can be synthesized using any of our simulation met-
hods for the control points of the Bézier function. In this commu-
nication, we choose the mean pattern of the class to get a smooth
pitch contour, since the last aim is to minimize the prediction error.

With this approach, a problem arises when there are not enough
samples (or none at all) of a given class in the corpus. In this case,
we fail to find a representative model for the class. We focus into
this problem in the following sections and describe our proposals
to solve it.

3. SOLVING SCARCITY PROBLEMS

3.1. The corpus

We used a corpus designed for concatenative synthesis that con-
tains 4625 stress groups (sequence of syllables within two conse-
cutive stressed words) and 1615 intonation groups (sequence of
stress groups within two relevant changes of F0)1.

The basic intonation unit is the stress group and pitch is eva-
luated from glottal closing time points. Each stress group is appro-
ximated using a third degree Bézier function and the four associa-

1Gently provided to us by TALP group of UPC university.
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Fig. 2. Statistical model corresponding to one the classes of in-
tonation units in the corpus. Histograms show the distribution of
the values of the four control points of the Bézier function. Mean
values and standard deviations are gathered in the table and the re-
presentation of ����� for the representative pattern (mean values)
of the class is drawn beside it.

ted control points are taken as the acoustic intonation parameters
of the unit.

The LPFs analysed in this work are inspired in the proposals of
previous studies of Spanish intonation carried out by several well
recognized authors (a review of the contribution of these authors
can be found in [2]). The following features were used: position of
the stress group in the intonation group (posGAenGE); type of ac-
cent (aceGA); number of syllables of the stress group (nSilGA);
number of stress groups in the intonation group (nGAenGE); num-
ber of syllables of the intonation group (nSilGE); position of the
intonation group in the sentence (posGEenFR); number of stress
groups in the sentence (nGEenFR). We discarded other LPFs, like
symbolic description of the pitch contour trajectory, because we
wanted to consider only those features that can be automatically
extracted from text. Since there were just a few interrogatives and
exclamatives in the corpus, we only used declarative sentences.

In order to get more reliable estimations of the prediction error,
our experimental data were made of four different combinations,
each one using 75� for modelling and 25� for testing.

3.2. Facing data scarcity

Each combination of LPFs determines one class in the initial dic-
tionary of models. The model of each of the classes is the statisti-
cal distribution of the acoustic intonation parameters of the stress
groups belonging to the class observed the modelling corpus. If
there are few stress groups of certain class, its model will not be
characteristic and its use in prediction can be problematic.

To avoid this situation, we propose to iteratively group toget-
her pairs of classes. Joining two classes implies creating a new
class which includes samples of both of them. A maximum simi-
larity criterion is applied in each step. Thus, grouping two classes
implies a precision loss but brings a generalization gain.

To select the candidate classes for grouping, an intra-class si-
milarity metric over the samples is computed. In [2], we described
several quality metrics to provide an objective comparison bet-
ween different classification alternatives, given the corpus. One
of such metrics is the sum of the squared error.
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Fig. 3. Prediction error as a function of the number of classes using
the 3, 5, and 7 most relevant LPFs, applying the grouping strategy
explained in section 3.2.
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where �� are the acoustic intonation parameters of the stress groups
belonging to class ��, and ��� with � � ����� is the mean value
vector representing ��; �� is the number of classes; �� �� � ����� re-
presents the Euclidean distance between vectors �� and ���, which
gives a self-similarity measurement over the samples of the same
class. Once two different classes are merged, a new classification
arises and a new value of � can be computed. The candidates to
join are the two classes which grouping minimizes the value of�
in the new classification. Grouping two classes implies to build a
new dictionary. This dictionary can be used to produce synthetic
pitch contours. If the prediction error obtained with the new dictio-
nary is smaller than the previous one, then the new classification is
better. By repeating the process, we can measure the compromise
between precision and generalization obtaining an optimum confi-
guration for the dictionary. The grouping process can be stopped
when the loss of precision forces unwanted prediction results.

Three different dictionaries of models will be built using the 3,
5 and 7 most relevant LPFs. The iterative process explained above
will be applied separately to the three dictionaries. Doing so, we
want to evaluate the effect of the number of LPFs in a compromise
between precision and generalization: as the number of LPFs gets
higher, the scarcity of samples gets more relevant.

3.3. Empty classes

Some of the classes of the dictionary of models can be void. One
class is void if there are no stress groups of such class in the mo-
delling corpus. But, a stress group of any of such void classes can
appear when using the dictionary to generate synthetic pitch con-
tours. Then, a strategy is necessary to cope with this situation. In
previous works, we have used the typical default pattern solution
and the inherent generalization properties of the learning algorit-
hm. Here, we devise an alternative solution which implies using
multiple dictionaries.

This strategy implies building several different dictionaries (in
our case 1, 3, 5 and 7 LPFs). Each dictionary will use the N most
relevant LPFs and all of them are built following the grouping cri-
terion explained in the previous section.

In order to benefit from the use of multiple dictionaries when
generating synthetic pitch patterns, we apply the following proce-

Fig. 4. Ranking the relative importance of the different LPFs. The
metrics GainInfo and Final Gain measure the capacity of the LPFs
to justify any given classification of the stress groups of the corpus
(see [3] for details). Kmeans refers to a classification performed
by clustering KMeans K=100. Optimum is the classification ob-
tained following the strategy explained in section 3.2 using 7 LPFs
and 300 classes.

dure: most informative dictionary is always used as the first alter-
native (in this case, the 7 LPFs’ dictionary); when a stress group
belonging to a void class appears, we recall the dictionary with the
higher number of LPFs which classifies the stress group into a non
void class. Thus, we ensure that the synthetic pitch contour is as-
sociated with the right observations in the corpus, at least partially.

4. RESULTS

The strategy discussed here will be compared with the use of a
default pattern and with the use of a decision tree. The default F0
pattern is the mean vector of acoustic intonation parameters in the
modelling corpus. The decision tree is trained with the dictionary
of classes. The input of the tree is the LPFs and the output is the
identifier of the class in the dictionary. We use the implementation
of the algorithm C45 provided with WEKA Tools2

The results of these three techniques will be compared in terms
of the prediction error. A separate study has been carried out for
stress groups associated with void classes and with populated ones.

Figure 3 shows prediction error trends as a function of the
number of grouped classes. For a given number of LPFs, an ini-
tial dictionary is built with the maximum number of classes. The
number of classes is then reduced iteratively grouping them as ex-
plained in section 3.2. As can be seen, the prediction error shows a
minimum value for a given number of classes. Although a similar
behaviour can be found for different numbers of LPFs, it is more
pronounced the higher the number of them. An explanation for
this is that, before reaching the minimum, the models associated

2http://www.cs.waikato.ac.nz/�ml/weka/
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Table 1. Mean prediction errors (RMSE(Hz) / Corr) of the senten-
ces of the testing corpus. Unseen is the prediction error of senten-
ces that contain any stress group belonging to a void class in the
dictionary. Seen is the prediction error of the sentences where all
the stress groups have been modelled. � Unseen is the percentage
of sentences in the testing corpus of the type unseen. 3LPF, 5LPF
y 7LPF refers to the use of the strategy explained in section 3.2
with 3, 5 or 7 LPFs respectively. DP refers to the use of default
patterns. DT refers to the use of a decision tree. MD refers to the
use of multiple dictionaries (as presented in this work).

with the classes do not generalize well enough, while after passing
through the minimum, the models loose accuracy.

It is remarkable that using a higher number of LPFs does not
always guarant better results, unless loss of generalization is not
taken into account. Thus, with more than 600 classes, results for
5 LPFs are worse than with 3. This result can be easily explai-
ned if we take into account that the higher the number of classes,
the lower the number of samples per class and, thus, the less the
representation capability of the classes.

Figure 4 compares the ranking of relevance of LPFs obtained
here with the ranking obtained in [3]. The value of the relevance
is higher now for all features. This means that the new classifica-
tion reflects better the intonation of the corpus. In relative terms,
the ordering in the ranking still remains. Some minor discrepan-
cies in the rankings still arise for the less representative features
(nSilenGE y nGAenGE). This is due to the different number of
classes (300 vs 100): the increase of granularity provided by the
classification presented here makes these features more relevant.

Table 1 shows the influence of the presence of unseen stress
groups on the final results. The main conclusion here is that the use
of multiple dictionaries significantly reduces the prediction errors
for the unseen configurations and provides better overall results
(Total) than the other alternatives.

The same default pattern is used in the 3LPF-DP, 5LPF-DP y
7LPF-DP classifications when unseen stress groups are to be pre-
dicted. Error values shown in the table are not the same for each
of these classifications because they are computed in a sentence
by sentence basis. Increasing the number of LPFs has a negative
impact since the number of unseen combinations grows but, as a
counterpart, it ensures a more accurate prediction of the populated
ones.

Comparing the results obtained using decision trees with the
ones using default pitch contours, we can conclude that error va-
lues are similar in the unseen case, but worse in the case of seen
samples. It can also be observed that results get worse as the num-
ber of LPFs increases. Incorrectly classified instances cause this:
as the number of void classes found in the training stage rises and
the number of LPFs inputs to the tree gets higher, the probability

of misclassification is bigger. Assigning a wrong class to a stress
group might lead to unacceptable prediction error increases.

Informal perceptual tests have been performed to qualify the
impact in naturalness of stress groups belonging to void classes.
It has been observed that results improve significantly when the
method of multiple dictionaries is used.

5. CONCLUSIONS

In this work, we have shown the feasibility of a new strategy based
in grouping classes of units of intonation in order to increase the
generalization characteristics of the models of intonation obtained
from corpus.

A strategy to reduce errors when the units of intonation to pre-
dict the pitch belong to a kind that has not been found in the mo-
delling stage has been devised. Results show the benefits of this
new approach.

A further step to support our intonation modelling methodo-
logy, presented in previous works, has been taken. A thorough tes-
ting of alternative units of intonation (not just stress groups) and
the impact of more sophisticated parametric representation techni-
ques (instead of control points of Bézier curves) are still to be done
in future works. We expect our methodology to properly cope with
these challenges too.
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