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ABSTRACT

In concatenative speech synthesis, various factors affect the natu-
ralness of synthetic speech. A cost for segment selection is cal-
culated by integrating some sub-costs capturing the degradation of
naturalness causedby such factors. In this paper, we optimize each
sub-cost function for converting a linguistic feature or an acoustic
parameter into a sub-cost based on perceptual evaluations. Two
types of perceptual experiments are performed with test sets con-
structed by controlling the variations of sub-costs to evaluate the
independent effect of each sub-cost and the interactions between
them. We clarify the effectiveness of perceptually optimizing sub-
cost functions from a result of a preference test comparing syn-
thetic speech before and after the optimization.

1. INTRODUCTION

Corpus-based approaches to Text-to-Speech (TTS) dramatically
improves the naturalness of synthetic speech [1]. As a result, the
corpus-based TTS can be used for practical purposes under lim-
ited conditions [2]. However, it is necessary to improve the quality
of TTS since it cannot synthesize sufficient natural speech consis-
tently for any input text. As one of the ways of achieving that,
we focus on improving a measure for selecting segments based on
perceptual characteristics.

In concatenative speech synthesis, the measure is calculated
with a cost function. In general, a cost consists of target and
concatenation costs calculated from several linguistic features and
acoustic parameters [3]. Various studies on the relationship be-
tween such features or parameters and the naturalness of synthetic
speech have been reported, e.g., discontinuities captured by spec-
tral parameters [4][5] and phonetic information [7][8], and the
degradation of naturalness caused by modifying phonetic duration
[9]. Since these costs are calculated in each segment, such as a
phoneme, they can be considered as a local cost that captures the
local degradation of naturalness. In order to evaluate the natural-
ness over an utterance, local costs in a segment sequence need to
be integrated into one cost by a certain function.

We have applied a norm function to an integrated cost function
and have optimized the function based on perceptual experiments
[10][11]. In order to achieve a higher quality of synthetic speech, it
is also necessary to optimize each sub-cost function for the features
and parameters. In this paper, we perform perceptual evaluations
of all the sub-costs used in our segment selection to optimize them.

In order to clarify the relationships between individual sub-
costs and the degradation of naturalness, several test sets con-
structed by controlling the variations of sub-costs are used. Each
sub-cost function is estimated so that the sub-cost corresponds to

Table 1. Sub-costs
Source information Vocal tract information

Target cost SCF� : F� SCcen: Spectrum
SCdur : Duration

Concatena- SCF�c: F� SCenv: Phonetic category
tion cost SCspg : Spectrum

perceptual scores as accurately as possible. Furthermore, we per-
form a preference test to clarify the effectiveness of the optimiza-
tion.

The paper is organized as follows. In Section 2, sub-cost func-
tions for segment selection are described. In Section 3, a proce-
dure for the perceptual optimization is described. In Section 4,
perceptual evaluations of sub-costs are described, and optimizing
sub-cost functions is described in Section 5. The effectiveness of
the optimization is described in Section 6. Finally, we summarize
this paper in Section 7.

2. SUB-COST FUNCTIONS FOR SEGMENT SELECTION

We use the six sub-costs shown in Table 1 for segment selection.
Target and concatenation costs are calculated from three different
sub-costs, respectively. From these costs, the integrated cost is cal-
culated. A cost on power is not used becausewe control segmental
power in waveform concatenation.

SCF� , as given by Eq. (1), captures the difference in F� con-
tour between a candidate segment ui and a target ti.

SCF� �ui� ti� �
�

P

PX

p��

SFF� �LF��ui� p�� LF��ti� p��� (1)

whereLF��ui� p� denotes the averagedF� in log-scale for the p-th
portion of an equally divided phoneme segment u i. SFF� denotes
a function to convert the difference of log F� into the sub-cost.

SCdur , as given by Eq. (2), captures the difference in phonetic
duration between a candidate segment and a target.

SCdur �ui� ti� � SFdur�Dur�ui��Dur�ti��� (2)

where Dur�ui� denotes the duration of a phoneme segment u i .
SFdur denotes a function to convert the difference of duration into
the sub-cost.

SCcen , as given by Eq. (3), captures the difference in phonetic
mean spectrum between a candidate segment and a target.

SCcen�ui� ti� � SFcen�Cen�ui�� Cen�ti��� (3)
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whereCen�ui� denotes the mean spectrum of a phoneme segment
ui. SFcen denotes a function to convert the difference of mean
spectra into the sub-cost.

SCenv , as given by Eq. (4), captures the discontinuity caused
by a mismatch of phonetic environments in segment concatena-
tion.

SCenv�ui� ui��� � SF s
env��Ph�ui���� Phs�ui����� Ph�ui��

�SF p
env��Ph�ui�� Php�ui��� Ph�ui����� (4)

where Ph�ui� denotes a phoneme for ui, and Phs�ui��� and
Php�ui� denote a succeeding phoneme of u i�� in the corpus and
a preceding phoneme of ui in the corpus, respectively. SFenv

denotes a function to convert the substitution of phonetic environ-
ments into the sub-cost.

SCspg , as given by Eq. (5), captures the spectral discontinuity
around a concatenation boundary.

SCspg�ui� ui��� �

l����X

f��l��

w�f� � SFspg�Spg
�h��ui� f�� Spg

�t��ui��� f��� (5)

wherew�f� denotes the triangular weighting function. Spg�h��ui� f�
denotes the spectrum in the f -th frame from the first frame of ui in
the corpus, and Spg�t��ui��� f� denotes that from the last frame
of ui�� in the corpus. SFspg denotes a function to convert the
spectral difference into the sub-cost.

SCF�c, as given by Eq. (6), captures the F� discontinuity at a
concatenation boundary.

SCF�c�ui� ui��� � SFF�c�LF
�h�
� �ui�� LF

�t�
� �ui����� (6)

where LF �h�
� �ui� denotes the log-scaled F� in the first frame of

ui and LF �t�
� �ui��� denotes that in the last frame of ui�� . SFF�c

denotes a function to convert the F� difference into the sub-cost.

3. PROCEDURE FOR OPTIMIZING SUB-COST
FUNCTIONS

In this paper, we assume that the local cost in each segment is
calculated as the weighted sum of all sub-costs. Moreover, we
define the sub-cost function described above as follows,

SF �x� y� � F �D�x� y��� (7)

where F denotes a mapping function and D denotes a distance
measure between x and y. We consider various function forms,
e.g., linear and non-linear functions, and distance measures, e.g.,
a mahalanobis distance, which are denoted as F �� F�� � � � � Fn and
D��D�� � � � �Dm, respectively.

A large amount of perceptual test data is needed to optimize
F , D, and the weights for sub-costs at once. Moreover, since per-
ceptual scores greatly depend on some sub-costs causing a large
degradation of naturalness, it seems impossible to clarify the cor-
respondenceof the other sub-costs to perceptual scores. To address
these problems, we separately perform evaluations for optimizing
each sub-cost function and for optimizing the weights.

Test sets for individual sub-costs are prepared assuming inde-
pendence between sub-costs (A sets). Each test set is constructed
under the condition that a distance measure for one sub-cost is var-
ied and those for the other sub-costs are kept as constant as possi-
ble. Moreover, another test set in which distance measures for all

sub-costs are varied independently is prepared (B set). From the
results ofA sets, we can determineF andD in each sub-cost func-
tion so that the error between the sub-cost and perceptual scores is
minimized, because the difference of perceptual scores in one test
set greatly depends on only one sub-cost. However, because some
sub-costs are not actually independent, e.g., SCF� and SCF�c, the
determinedF andD are not always the best in the case of integrat-
ing all sub-costs. Therefore, we estimate only the parameters of a
mapping function in each pair of Fn and Dm. As a result, several
candidates (n �m) for a sub-cost function are estimated in each
sub-cost. Then, the optimum set of sub-cost functions is deter-
mined from the results of B set taking into account the interaction
of all sub-costs. The weights for sub-costs are also determined.
Optimizing sub-cost functions is performed as follows:

1. Constructing test sets for evaluating the correspondencesof
individual sub-costs to perceptual scores (A sets) and for
evaluating the correspondence in the case of integrating all
sub-costs (B set).

2. Performing perceptual evaluations to determine perceptual
scores in each test set.

3. Estimating several candidates for a sub-cost function using
some function forms and distance measures in each sub-
cost from the results of A sets.

4. Selecting the optimum set of the sub-cost functions having
the best correspondence in the result of B set.

4. PERCEPTUAL EVALUATIONS OF SUB-COSTS

4.1. Designing test sets

We did not use word utterances but phrase utterances extracted
from sentenceutterances as test stimuli to match experimental con-
ditions to the conditions under which TTS is actually used. In or-
der to easily control the variations of sub-costs, the selection of
candidate segments was performed at only one syllable in a target
phrase. Target information for the selection was extracted from
natural speech. The size of the corpus from which candidate seg-
ments were selected was 35 hours. A test set of 503 sentences that
were not included in the corpus was used as targets.

A stimulus was synthesized by substituting a syllable segment
in the carrier phrase with a candidate segment in the corpus. In
each target syllable, 100 candidate segments remaining after pre-
selection with some sub-costs were actually used.

A set of stimuli for each sub-cost was constructed by selecting
stimuli so that a distant measure for one sub-cost was varied and
distant measures for the other sub-costs were kept as constant as
possible. Six test sets (AF�–AF�c sets) were constructed for Exp.
A. The number of stimuli was 30 each. Moreover, another test
set (B set) in which distance measures for all sub-costs were var-
ied independently was constructed for Exp. B by extracting 105
stimuli from A sets.

4.2. Perceptual evaluations

Seven perceptual evaluations with the constructed test sets were
performed independently. Pairs of natural speech and synthetic
speechwere presented to listeners. Parts of substitutionwere shown
to listeners when presenting each stimulus-pair. The degradation
of naturalness was evaluated with a 5-point scale. Listeners were
instructed to use 5 points widely in each test set. The number of
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Table 2. Sub-cost functions before optimization. Fl��� denotes
linear function for scaling. Mel-CD denotes mel-cepstral distance

Sub-cost Function Distance measure
function form

SFF���� Fl��� Distance of log F�

SFdur��� Fl��� Distance of duration
SFcen��� Fl��� Mel-CD between mean spectra
SFenv��� Fl��� Mel-CD predicted from phonetic

information with linear regression
SFspg��� Fl��� Mel-CD between frames
SFF�c��� Fl��� Distance of log F�

Table 3. Correlation coefficients between individual sub-costs and
perceptual scores in Exp. A.

Sub-cost Before optimization After optimization

SCF� 0.748 0.830
SCdur 0.396 0.624
SCcen 0.613 0.773
SCenv 0.450 0.666
SCspg 0.456 0.456
SCF�c 0.748 0.700

listeners who participated in the experiments were 15 to 17 for
Exp. A and 22 for Exp. B, respectively. The perceptual score
for each stimulus was calculated as an average of the normalized
score calculated as a Z-score (mean = � and variance = � in each
test set).

4.3. Experimental results

We use the simple sub-cost functions shown in Table 2 before the
optimization. These sub-costs are basically calculated as the Eu-
clidean distance of acoustic parameters. Moreover, each sub-cost
is normalized by linear conversion so that the average of the sub-
cost is equal to ���.

Table 3 (“Before optimization”) shows correlation coefficients
between the individual sub-costs and perceptual scores in Exp. A.
It can be seen that the sub-costs on F�, i.e., SCF� and SCF�c,
have better correspondences than the other sub-costs.

A multiple correlation coefficient between an estimated cost,
which is calculated as a weighted sum of all sub-costs, and the
perceptual scores obtained in Exp. B is shown in Table 4 (“Be-
fore optimization”). This correlation is equal to that between a
cost, which is calculated with the optimum weights for sub-costs,
and perceptual scores. This result indicates that only optimizing
weights for sub-costs is not enough to achieve a good correspon-
dence of the cost to the perceptual scores.

Table 4. Multiple correlation coefficients between a cost calcu-
lated as a weighted sum of all sub-costs and perceptual scores in
Exp. B

Before optimization After optimization

0.528 0.696

5. OPTIMIZING SUB-COST FUNCTIONS

5.1. Estimating candidates for each sub-cost function

Although some sub-costs, e.g., SCF� and SCF�c, have good cor-
respondences in Table 3, it is possible that a non-linear mapping
is more effective than a linear mapping. Moreover, it is possible
that the degradation of naturalness cannot be perceived in the case
where the distance in a measure is less than a certain threshold.
Therefore, we consider the following function forms as candidates
for a mapping function:

Fl�D� � a �D � b� (8)

Fg�D� � �a � exp

�
�

�
D

c

�
�
�

� b� (9)

Fs�D� �
a

�� � exp��c � �D � d���
� b� (10)

where a, b, c, and d denote parameters in each function, and D
denotes a distance measure.

Parameters are estimated by minimizing the mean square error
between the sub-cost and perceptual scores on the result of Exp.
A. The bias parameter b is adjusted so that the minimum value of
the sub-cost is equal to �. We consider various distance measures,
D��D�� � � � �Dm for each sub-cost. Therefore, many candidates
(��m) for a sub-cost function are estimated.

5.2. Selecting the best sub-cost functions

The optimum set of sub-cost functions is selected from the esti-
mated candidate functions while considering the interaction be-
tween sub-costs as follows.

Multiple correlation coefficients between the cost calculated
as a weighted sum of all sub-costs and perceptual scores in Exp.
B are calculated for all possible combinations of the estimated
candidate functions. A set of sub-cost functions having the best
multiple correlation coefficient is selected.

5.3. Results after optimization of sub-cost functions

The optimized sub-cost functions are shown in Table 5. All sub-
cost functions except for SFspg are different from those before the
optimization.

Correlation coefficients between individual sub-costs after the
optimization and perceptual scores in Exp. A are also shown in
Table 3 (“After optimization”). It can be seen that the correspon-
dences of almost all sub-costs are improved except for SCF�c.

The partial correlation coefficients between individual sub-
costs and perceptual scores in Exp. B are shown in Table 6. A
partial correlation of SCF�c before the optimization is almost �
although the correspondence of it to perceptual scores in Exp. A
is good. In other words, this sub-cost is not meaningful in the case
of integrating all sub-costs. After the optimization, improvement
of the partial correlation of this sub-cost can be seen. This fact
shows that it is effective to optimize sub-cost functions taking into
account the interaction of all sub-costs.

A multiple correlation coefficient between the estimated cost
and perceptual scores is much improved by the optimization as
shown in Table 4 (“After optimization”), which indicates the ef-
fectiveness of the procedure for optimizing sub-cost functions as
described in this section.
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Table 5. Sub-cost functions optimized by perceptual evaluations

Sub-cost Function Distance measure
function form

SFF� ��� Fs��� Distance of log F�

SFdur��� Fl��� Distance of duration normalized by
standard deviation calculated in
each phoneme

SFcen��� Fg��� Mel-CD between mean spectra
normalized by determinant of
covariance calculated in each phoneme

SFenv��� Fl��� Perceptual scores in experiments
described in [8]

SFspg��� Fl��� Mel-CD between frames
SFF�c��� Fs��� Distance of log F� at voiced phoneme

boundary

Table 6. Partial correlation coefficients between individual sub-
costs and perceptual scores in Exp. B

Sub-cost Before optimization After optimization

SCF� 0.362 0.421
SCdur 0.174 0.324
SCcen 0.157 0.128
SCenv 0.102 0.244
SCspg 0.118 0.203
SCF�c 0.043 0.269

6. EXPERIMENTAL VERIFICATION OF
EFFECTIVENESS OF PERCEPTUAL OPTIMIZATION

We performed a preference test to clarify the effectiveness of the
above described method for optimizing sub-cost functions to the
improvement of the naturalness of synthetic speech. Synthetic
speech before and after the optimization were compared in pairs.
Weights for sub-costs were set to equal values to focus on the ef-
fectiveness of the optimization of sub-cost functions. The corpus
size was 35 hours. A set of 53 sentences that were not included
in the corpus was used to synthesize the stimuli. Natural prosody
was used as the target for segment selection. Ten Japanese listen-
ers participated in the test.

The preference score in the case of optimizing sub-cost func-
tions was ����� � ����	 (�
	 confidence interval). Therefore,
perceptually optimizing sub-cost functions is effective for improv-
ing the naturalness of synthetic speech.

We also analyzed the preference scores for individual listeners
and those for individual sentences. For listeners, the preference
scoreswere over 50% (the minimum score = 51.9%, the maximum
score = 68.9%). The preference scores in 7 listeners were signif-
icantly larger than 50%. On the other hand, the preference scores
for individual sentences were not always over 50%. In fact, the
preference scores for 4 sentences were significantly smaller than
50%. These results reveal that it is difficult to improve the natu-
ralness of synthetic speech for any input text by optimizing cost
functions.

7. CONCLUSION

We optimized each sub-cost function for converting a linguistic
feature or an acoustic parameter into a sub-cost based on percep-
tual evaluations. Two types of perceptual experiments were de-
signed so that the independent effect of each sub-cost and the in-
teractions between them could be evaluated. We also performed
a preference test comparing synthetic speech before and after op-
timizing sub-cost functions. As a result, it was clarified that the
perceptual optimization of sub-cost functions is effective for im-
proving the naturalness of synthetic speech. Since weights for
sub-costs were also determined in this optimization, we need to
clarify the effectiveness of optimizing the weights.
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