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ABSTRACT

In the conventional HMM-based segmentation method, the 

HMM training is based on MLE criteria, which links the 

segmentation task to the problem of distribution estimation. The 

HMMs are built to identify the phonetic segments, not to detect 

the boundary. This kind of inconsistency between training and 

application limited the performance of segmentation. In this

paper, we adopt the discriminative training method and 

introduce a new criterion, named Minimum Segmentation Error 

(MSGE), for HMM training. In this method, a loss function

directly related to the segmentation error is defined. By

minimizing the overall empirical loss with the Generalized

Probabilistic Descent (GPD) algorithm, the segmentation error is 

also minimized. From the results on both Chinese and Japanese

data, the accuracy of segmentation is improved. Moreover, this

method is robust even when we do not have enough knowledge

on HMM modeling, e.g. the number of states is not optimized. 

1. INTRODUCTION 

Recently, corpus-based concatenative speech synthesis has

become popular due to its high quality, which critically depends 

on the accuracy of the phonetic labeling of the corpus. Since the 

labeling task needs a lot of human effort and a long time, 

especially for the large corpus, automatic segmentation (AS) has

been very important for corpus-based speech synthesis,

providing consistent and accurate phonetic labeling with high

efficiency. Many methods have been proposed for the AS 

task,[1][2][3] and the HMM-based method adopted from

automatic speech recognition is now the most popularly used. 

Although the current results of HMM-based method are quite 

impressive, there are also shortcomings that prevent them from

achieving even better performance.

The conventional method of training the HMM is adopted 

from speech recognition, which is based on Maximum

Likelihood Estimation (MLE) criteria (via a powerful training 

algorithm, Expectation Maximization algorithm). In other words, 

this training method links the segmentation task to the problem 

of distribution estimation, and the HMMs are built to identify

the phonetic segments, not to detect the boundary between the

phonetic segments. This kind of inconsistency between the 

training and the application of HMM limits the segmentation

performance.

     The discriminative training method and the criteria of

Minimum Classification Error (MCE) based on the Generalized 

Probabilistic Descent (GPD) framework has been successful in

training HMM for speech recognition [5][6], and to a certain 

extent segmentation can be regarded as a state recognition task

with known transcription. This prompts us to apply the 

discriminative training method and the corresponding criteria for 

the segmentation task. In this paper, a new criteria, called 

minimum segmentation error (MSGE), is proposed to train the 

HMM under the GPD framework. In this method, we defined a 

loss function directly related to segmentation errors. By

minimizing the overall empirical loss under the GPD framework, 

the segmentation errors could also be minimized. 

     This paper is organized as follows. In section 2, we briefly

review the GPD framework for parameter optimization. In 

section 3, the MSGE-based HMM training procedure, including 

a loss function definition and the parameters updating schedule, 

is presented in detail. Next, the segmentation accuracy of the 

HMMs trained by MSGE criteria is evaluated on both Chinese

and Japanese data in section 4. Finally, we give our conclusion 

in section 5.

2. GENERALIZED PROBABILISTIC DESCENT 

For a given loss function ),(X , where X is a feature vector 

and  represents the system parameters, we want to optimize

 to minimize the overall expectation loss: 

dXXpXXEL )(),()],([)( ,                (1) 

where  is a priori distribution. Since we do not know the a

priori distribution, we cannot evaluate the expected loss directly.

The Generalized Probabilistic Descent (GPD) algorithm[4] is a 

very powerful algorithm that can be used to accomplish this

task. In a GPD framework, the target loss function is minimized

according to an iterative procedure 

)(Xp

tttttt XU ),(1
,                     (2) 

where  is a positive definite matrix,  is the tth training 

sample used in the sequential training process, and
tU tX

t
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required for convergence. In practice, only a finite number of 
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under the GPD framework. With sufficient training samples, the 

empirical loss converges to the actual expected loss. It should be 

noted that the GPD framework is a general framework for

various definitions of loss function. A more detailed introduction 

and discussion of GPD algorithm can be found in the literature

[4][6].

3. MINIMUM SEGMENTATION ERROR 

The conventional measurement of segmentation error is usually

defined as the time difference in boundary location between

human labeling and automatic labeling, i.e. error length. 

According to this definition, the segmentation errors are discrete 

(in frame scale) and not explicitly related to the parameters of 

the HMM. Therefore, the gradient-based optimization methods

cannot be used to minimize the segmentation errors directly.

Here, we introduced a new measurement, named error degree, 

for segmentation error. Under the new measurement, a 

meaningful loss function is defined, which is directly related to 

segmentation errors and can be minimized by using the GPD

algorithm.

3.1. Measurement for segmentation 

Usually, the HMM-based segmentation is a state alignment

procedure performed by the Dynamic Programming algorithm

(e.g. Viterbi). For simplification, we look into the segmentation

procedure of a sample X  that consists of two connected 

segment units  and , i.e. . In the DP

algorithm, the likelihood of the best state alignment is calculated

by

1X 2X },{ 21 XXX
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Q
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where
bQ is the optimal state sequence with maximum

likelihood, which is calculated as 

);,(log);,( QXPQXg
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where
tt qqa

1
 and b are transition probability and output 

probability distribution, respectively.

)( tq x
t

     With the optimal state alignment, the corresponding phonetic

boundary is labeled at time t , which satisfies the condition that 

1t
 is the final state of first unit and q t

 is the first state of the 

next unit. If the boundary is not the same as the humanly labeled 

boundary, i.e. the correct boundary, the optimal state alignment 

is regarded as “incorrect” state alignment. Also, the “correct”

state alignment is defined as the optimal state alignment with the

correct phonetic boundary restriction, which satisfies 

q

);,();,();( 222111 ccc QXgQXgXg
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where
1cQ  and 

2cQ  are respectively the optimal state sequences

of  and , and 
1X 2X },{ 21 ccc QQQ .

     Accordingly, we defined error degree as the difference in 

likelihood between the incorrect and the correct state sequence, 

i.e.

),(),( XgXgE cbd
.                           (9) 

Figure 1. Correlation between error degree and error length 

where  and ),(Xgb ),(Xgc
 are the likelihood of incorrect 

and correct state sequences, respectively. When the 

segmentation is correct, i.e. 
cQbQ ,  is equal to 0. If  is 

larger than 0, this indicates that the segmentation is incorrect and 

the value of E reflects how large the segmentation error is in 

some aspect. In order to find the meaning of error degree in

depth, we analyzed the correlation between error degree and 

error length. 

dE dE

d

The HMMs trained by MLE criteria were used to segment the

Japanese training data (the details of the data information can be 

found in section 4.2). The correlation between error degree and

error length was analyzed from all segmentation errors, and the 

correlations of some typical boundaries are shown in figure 1.

From the figure, error degree is nearly linear with error length, 

and for different boundary types, the slope is different, i.e. the 

correlation is context dependent. For the boundary between 

plosive and vowel, or fricative and vowel, the slope is relative 

large, i.e. error degree is sensitive to error length. For the

boundary between vowel and vowel, or semivowel and vowel, 

the slope is relative small, i.e. error degree is less sensitive to 

error length. This characteristic is identical to the requirement of

concatenative speech synthesis, which is quite sensitive to the

segmentation accuracy of plosive segments, since a plosive

segment with an imprecise boundary might result in two bursts 

or no burst in synthetic speech, and less sensitive to the accuracy

of vowel segment. In this sense, error degree is a meaningful

factor for measuring the segmentation error. Because of the

correlation between error degree and error length, minimization 

of error degree is also related to minimizing error length. 

3.2. Loss function definition

To consider both explicit error length and inherent error degree, 

we defined the loss function as 

)),(),(()( XgXgEEE cbd
,         (10) 

where is error length and E  is a positive number. In this loss 

function, is regarded as a constant number in the 

optimization procedure by the GPD algorithm, so the loss 

function can be differentiated with respect to the parameters.

The meaning of  can be explained as follows. 

E

E
On the one hand, it indicates the consideration of explicit

error length. When  is larger than 0, the loss of the training 

data with large error length is large, and accordingly the model
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parameters are updated on a large scale, which means there is 

more focus on eliminating large errors. From this point of view, 

the loss function provides a flexible way to optimize the 

parameter for the different focus. On the other hand,  means

the weight of the training data, i.e. the same performance can be 

achieved by repeating the training data  times when the loss 

function is defined as  only.
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This definition of loss function is much more meaningful,

reflecting both the explicit error length and the inherent error 

degree. Moreover, by this definition, the loss function is 

continuous, differentiable, and directly related to the parameters

of HMM. By using the gradient-based optimization method (e.g. 

GPD), the loss function can be minimized, which relates to a 

minimization of the segmentation error. 

3.3. Parameter updating 

Next, we optimized the parameters under this loss function by

the GPD algorithm. For a state j  of HMM h  which has M
mixtures, the output probability distribution is 

b
M

m
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where b is the output probability of one mixture, G  is a 

normal Gaussion distribution, and c ,

and  are mixture weights, mean vector and 

covariance matrix, respectively.
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It should be noted that the HMM as a probability measure has

some original constraints, such as: 1) the function is positive; 2) 

 for all h , and 3) 1,,m mjhc j, 0,l
. In order to 

maintain these constraints during parameter adaptation, we

should take some parameter transformations as follows: 
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The transformation in (12) is important for designing the step 

size for convergence. More discussion about the parameter 

transformation can be found in [6].

 For a sample  in the training set, the adaptation of the 

parameter is 
nX
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where )(  denotes the Kronecher delta function. For the mean

vector, the updating rule is 
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Finally,
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     Similarly, for the covariance matrix , the updating rule 

is
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where  is a identity matrix. Finally,
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     Also, the mixture weight is updated as 
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The meaning of the updating rule can be explained as follows. In 

equation (15), is equal to zero when 

, or equal to 1 when q  and q , or equal to 

–1 when q  and q , which indicates, for an input 

vector, if the best state alignment differs with the correct state

alignment, the updating rule is to move the parameters of the

incorrect state model far away from the vector and to move the

parameters of the correct state model close to the vector. 

)()( jqjq ctbt

ctbt q

ctq jct

ctbt qq jbt

bt

4. EVALUATION AND DISCUSSION 

We trained the HMMs by using MLE and MSGE criterion and

then compared the segmentation accuracies of these two 

methods. The MLE-based HMM training is performed by the 

HTK tools.[8] In MSGE-based training, the HMMs are

initialized by the results of MLE-based training. The 

performance was evaluated on both Chinese and Japanese data. 

4.1. MSGE-based HMM training on Chinese

The training and testing data consists of 1000 and 680 sentences,

including 27,312 and 15,872 phones, respectively. All of the

data had been carefully hand-labeled by the same labeler. 

The phone set used here has 60 phonemes, including 21

initials, 37 finals, pause and silence. Monophone HMMs are 

adopted and the numbers of states are three for initials, pause 

and silence, and five for finals. The number of mixture

components set to five for each phoneme. The acoustic features

are 16-order MFCC and energy and the delta coefficients. The

analysis window size and shift are 20 ms and 5 ms, respectively.

From the result of close and open test in figure 2(a), the

MSGE-based discriminative training is convergent after 10-20

iterations. As can be seen in Table 1, the accuracy of 

segmentation improved after MSGE-based training, especially

for the errors less than 5ms. We also examined the effect of error

length on loss function by training with different  values. 

When  increases from 0 to 1, which means we have more

focus on larger errors, the percentage of error less than 30 ms

increased 0.13%, whereas the percentage of error less than 5ms

decreased 0.83%. 
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     The details on accuracy with different phonetic boundaries

are shown in Table 2. After MSGE-based training, the average

error of the CV-boundary decreased from 4.51 ms to 3.60 ms, 

i.e. a reduction of 19.7%, whereas that of the VV-boundary

decreased 9.6%. Since we noted that concatenative speech

synthesis is much more sensitive to the accuracy of the CV-

boundary and insensitive to the VV-boundary, this improvement

appears to be reasonable for speech synthesis.

4.2. MSGE-based HMM training on Japanese 

The training and testing data consists of 2263 and 501 

phonetically balanced sentences, including 185,404 and 30,706 

phones respectively, and all of the data had been hand-labeled. 

The phone set used here includes 60 phonemes. Monophone

HMMs are also used, and the numbers of states and mixture

components are three and five, respectively for each phoneme.

The configuration of the acoustic feature analysis is the same as

that used in the former experiment.

     The convergence of MSGE-based discriminative training on

Japanese data can be found in figure 2(b). From Table 3, the 

segmentation accuracy for Japanese was improved after MSGE-

based training, and the effect of  with different E  values is 

similar to that for Chinese. In Table 4, the largest improvement

also occurred in the accuracy of the CV-boundary, where the

average error reduced from 7.85 ms to 4.84 ms, i.e. a reduction

of 38%. 

Comparing the results for Japanese and Chinese data, we 

found that the improvement for Japanese is much larger than that

for Chinese. One reason is that the HMM modeling in Japanese 

is not optimized, that is, it simply uses 3-state model for all 

phonemes. Therefore, the segmentation accuracy of the baseline 

trained by MLE criteria for Japanese is much worse than that for

Chinese. Nevertheless, the difference in accuracy between 

Japanese and Chinese data is reduced after MSGE-training. This 

indicates that the MSGE-based training method can work well

even when the HMM modeling is not optimized. Furthermore, it

can compensate for the inaccuracy of the HMM modeling to a

certain extent. 

5. CONCLUSION 

In this paper, we proposed minimum segmentation error 

(MSGE) based discriminative training method for automatic 

segmentation. In this method, a meaningful loss function was 

defined to directly relate to the segmentation errors. By

minimizing the overall empirical loss with the GPD algorithm,

the segmentation error was also minimized. We investigated its

performance both on Chinese and Japanese. From the results, the 

accuracy of segmentation is largely improved after MSGE-based

training, even when the HMM modeling is not optimal. As the 

improvement in eliminating large errors, e.g. larger than 30 ms,

is very limited. Further research and experiments on eliminating 

the large errors by using the explicit duration model are in

progress.
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(a)Chinese data                            (b) Japanese data

Figure 2. Convergence of MSGE-based discriminative training 

Table 1. Segmentation accuracy for Chinese
Percentage of the accuracy (%) 

5ms 10ms 20ms 30ms

Aver

(ms)

MLE 70.44 86.89 95.58 97.75 6.856

MSGE( =0) 76.01 88.70 95.74 97.85 6.112

MSGE( =1) 75.18 88.65 95.81 97.98 6.174

Table 2. Accuracy with different phonetic boundaries (Chinese) 

Average error (ms)

CC CV VC VV

MLE × 4.51 5.69 11.99

MSGE( =0) × 3.60 5.37 10.83

Table 3. Segmentation accuracy for Japanese

Percentage of the accuracy (%) 

5ms 10ms 20ms 30ms

Aver

(ms)

MLE 60.84 79.64 92.07 96.31 8.666

MSGE( =0) 70.15 84.46 94.00 97.29 7.035

MSGE( =1) 69.68 84.40 94.24 97.43 7.084

Table 4. Accuracy with different phonetic boundaries (Japanese) 

Average error (ms)

CC CV VC VV

MLE 5.18 7.85 7.16 11.31

MSGE( =0) 4.64 4.84 6.45 9.59
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