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ABSTRACT 

This paper proposes a voice activity detector (VAD) that 

makes the speech/noise classification by applying the 

statistical chi-square test to each frame.  It also uses a 

continuous update of the background noise estimate.  The 

speech is first enhanced using a noise reduction system, 

with noise estimates also obtained with the help of the chi-

square test.  The noise-reduced signal is decomposed into 

sub-bands, and the chi-square test is used again in another 

form to compare the observed signal distribution to the 

estimated noise distribution.  If the chi-square test 

determines that they are close, the frame is declared to be 

noise, otherwise speech.  The performance of this VAD 

was found to be significantly superior to several 

benchmark VADs, with accuracies above 89% even at a 

SNR of 0 dB, which is up to 25% better than the others. 

1. INTRODUCTION 

Voice activity detectors (VADs) classify frames of a 

speech signal into speech (actually speech plus noise) or 

noise only.  We assume an additive noise model in which 

the speech signal s(t) is corrupted by uncorrelated additive 

noise w(t), giving the degraded composite signal y(t):

y(t) = s (t) + w(t) . (1.1) 

There are two ways of interpreting this model: 

1. The ‘additive noise’ point of view; i.e. the speech 

signal is corrupted by additive noise 

2. The ‘additive signal’ point of view; i.e. the 

residual noise signal has speech added to it. 

Nearly always the problems of voice activity 

detection, noise estimation, and noise reduction have been 

approached from the first point of view [1, 2]. 

This paper presents a unique solution to the problem 

based on the second point of view, which has not had 

application in VADs before.  Since the decision made by 

the VAD is critically dependent on the current noise 

estimate, the background noise estimate is continuously 

updated (with the help of the chi-square statistical test).  

The noisy speech is then enhanced using this noise 

estimate.  Finally, a speech/noise detector, also based on 

the chi-square test, is used to make the VAD decision. 

2. THE CHI-SQUARE TEST 

The chi-square test seeks to determine if there is a good fit 

between the frequencies of the observed data and the 

frequencies of the expected or theoretical data [3].  It uses 

the chi-square statistic to compare the two frequency 

distributions and test the hypothesis that the observations 

come from the same probability distribution.  The 

expected frequencies of each class are determined on the 

basis of a presumed model. 

In this paper, the chi-square test has been applied to 

the two problems of noise estimation and voice activity 

detection.  In both of these cases, noise-only segments of 

corrupted speech samples need to be identified – to obtain 

accurate updating of the noise estimates in the first case, 

or for accurate identification of speech frames in the 

second case.  The chi-square test provides a tool to 

compare the estimated noise probability density function 

(pdf) with the current signal pdf and decide whether they 

are the same. 

3. NOISE ESTIMATION USING THE  

CHI-SQUARE TEST 

As already remarked, noise estimation is critical for both 

noise reduction and voice activity detection.  To estimate 

the noise with improved spectral sensitivity, the input 

signal is first passed through a bandpass filterbank H1, …, 

HM, as shown in Figure 1.  Each of these sub-banded 

signals is then divided into time frames of size L, where 

M<<L.  The chi-square test is first applied to the outputs 

of this filter bank, as briefly described below. 
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Figure 1.  The division of a signal into M sub-bands 
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Let 
,k p

x be the signal in sub-band k and frame p.  The 

samples in the noise vector 
,k p

w  will be given by 

, , ,
(1),..., ( )

k p k p k p
w w L=w (3.1)

To identify the noise-only frames, for either updating 

the noise estimate or to make a decision in the VAD, the 

following hypothesis is proposed for each frame, 
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where 
, 1k p−w  is the noise estimate from the previous 

frame p-1 and 
,k p

s  is the speech signal present in frame p.

To test the above hypothesis, the chi-square test is 

applied to the samples in the current frame p for each sub-

band k.  The noise estimates 
, 1k p−w  from the previous 

frame, p-1, are first grouped into N bins, whose 

boundaries are chosen such that the numbers in each bin, 

ei, are approximately equal.  These numbers define a noise 

histogram which approximates the noise pdf of the 
previous frame, p-1, and the resulting vector of 

expectations e is 

1
[ , , , , ]

i N
e e e=e   for N bins. (3.3) 

The vector o of observation is obtained in the same way 

from the current signal 
,k p

x , using the same N bins.  If the 

number of observed values in bin i is oi, we have simply 

1[ , , ]i No o o=o  . (3.4) 

The chi-square test is then applied to these bins, where the 

chi-square statistic [3] is given by 

2
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i i

i i

o e

e
χ

=

−
=  (3.5) 

The calculated value of this chi-square statistic is 

compared to the appropriate threshold value of the chi-

squared distribution, which depends on the allowed error 

probability and which is obtained from standard chi-

square tables.  If the obtained value is more than the 

tabulated value the hypothesis is rejected, otherwise it is 

accepted.

The hypothesis test can thus be written as 

2
1

0
threshold {H

Hχ ><  (3.6) 

Background noise is usually assumed in noise estimation 

techniques to have a Gaussian distribution.  Speech is 

(relatively) non-stationary and is non-Gaussian.  Given a 

noisy speech signal, the chi-square test can be used to 

effectively identify the noise-only segments of the signal.  

If the chi-square test is applied on relatively long time 

frames of the signal, the assumption can be made that the 

noise pdf is Gaussian. 
The chi-square test is applied to the noisy speech 

signal after decomposition into sub-bands.  The test will 

determine if the observed signal distribution follows the 

previously estimated Gaussian noise distribution.  If H0 is 

accepted, i.e. if the current frame is determined to be a 

noise-only frame similar to the current noise estimate, the 
pdf of the noise is updated using a simple one-pole 

smoothing filter with smoothing coefficient .  Otherwise 

the existing pdf is retained.  This process is repeated for 

each sub-band and their noise estimates are updated. 

4. VOICE ACTIVITY DETECTION USING NOISE 

REDUCTION AND A CHI-SQUARE TEST 

The proposed VAD consists of three main components: 

1. Chi-square based noise estimator (as in Section 3), 

2. Noise reduction system, and 

3. Chi-square based decision module. 

A block diagram of the complete system is shown in 

Figure 3.  This system is based upon two new principles in 

the context of VADs: noise reduction and chi-square 

detection.  Testing showed that the accuracy of a VAD 
increased dramatically if speech frames are detected in a 

noise-reduced signal.  The chi-square test was also found 

to accurately and robustly distinguish speech-plus-noise  

frames from noise-only frames. 
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Figure 2.  Block diagram of the proposed VAD 

In this VAD, each frame of the input speech is first 

spectrally decomposed and then the noise is suppressed.  

Testing of noise reduction systems based on spectral 

subtraction showed that the Ephraim and Malah (EM) 

noise suppression rule [4] was the most effective for this 

purpose.  Noise estimates, which are needed by the noise 

reduction system, are provided by the chi-square noise 

estimator described in Section 3. 

After synthesis, the noise-reduced signal is again 

filtered into sub-bands so the chi-square test can be 

reapplied to obtain an accurate speech/noise decision.  The 
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final synthesis-analysis steps could be omitted if the sub-

bands were the same, since they would then cancel out. 

5. IMPLEMENTATION DETAILS 

In the noise reduction system, the noisy speech was 

bandlimited between 0.2-4 kHz, and then enhanced by 

passing through a DFT overlap-add filterbank with 

optimally chosen gains in each band.  An analysis frame 

size of 256 samples was used, with a step size of 64 

samples.  The optimum band gains were estimated from 

the spectrally decomposed noisy signal using the Ephraim 

and Malah gain function with a smoothing parameter of 

0.98.  Noise estimates were obtained from the chi-square 

noise estimator described in Section 3. 

The VAD decision was made using another chi-

square detector on the synthesised noise-reduced signal.  

In it a frame size of 15 ms, i.e. 125 samples, was used 

with an overlap of 25 samples at a sampling frequency of 

8192 Hz.  The signal was divided into 8 equal sub-bands 

using a digital IIR filterbank of elliptic bandpass filters of 
order 10, with bandwidths of 487.5 Hz.  The histogram of 

the current frame was calculated and divided into 7 classes 

(or bins).  The first three frames were recursively averaged 

to provide the starting value of the noise vector.  The chi-

square test was applied to each sub-band signal in each 

current frame, comparing it to the previously estimated 

noise distribution.  Those frames in which the null 

hypothesis was accepted for all 8 sub-bands were declared 

to be noise, whereas all others were declared to be speech-

plus-noise frames. 

The assumption in the noise estimator that the noise 

pdf is Gaussian is valid only if long frame sizes are used.  

Hence to estimate the noise (only), the current input frame 

was combined with seven previous frames, giving frame 

sizes of 122 ms for noise estimation.  These frames were 

then filtered into eight sub-bands using the IIR filterbank 

above.  The observed and expected distributions in each 

sub-band were divided into 7 classes and tested using the 
chi-square test.  Only those frames in which the null 

hypothesis was accepted for all 8 sub-bands were declared 

to be noise.  The noise estimate was then updated using a 

single-sided one-pole recursive filter.  Testing found that a 

smoothing coefficient of 0.95 gave the best results. 

6. TEST RESULTS 

The VAD was applied to 12 sentences with added babble, 

car, pink, and white noises at SNRs of 0, 5, and 10 dB.  

Figure 3 shows the results obtained from a sample test 

sentence at 10 dB SNR.  The chi-square detector manages 

to pick up short bursts of speech that are only a few 

hundred samples (20 ms) long. 
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Figure 3.  The performance of the chi-square VAD. 

a. The output of the chi-square detector and the noisy 

speech signal with added babble noise at SNR = 10 dB;  

b. The clean speech signal. 

Figure 4 shows a noisy speech sample at an SNR of 5 dB 

with the noise portion at the start of the sample identified 

using the chi-square noise estimator by itself (without the 

final chi-square voice detector). 
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Figure 4.  The performance of the chi-square noise 

estimator.  a. The noisy speech signal (SNR = 5 dB); b. 
The frames declared to be noise-only; c.  The clean speech 

signal. 
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Figure 5.  The accuracy of the chi-square based VAD 

applied to speech samples with various added noise types. 

I - 627

➡ ➡



7. COMPARISON WITH OTHER VADS 

The proposed VAD performance was compared to that of 

these existing benchmark VADs: 

1. VAD in the GSM standard [1] 

2. VAD in the ITU standard G.729 Annex B [2] 

3. VAD proposed by Sohn et al. [5] 

The VADs were run on 12 test sentences with added 

babble, car, pink, and white noise at SNRs of 10, 5, and 0 

dB.  The VADs were compared by their percentage 

accuracy compared to the true speech/noise classification.  

The results are given in Table 1. 

Table 1.  A comparison of the percentage accuracies of 

the benchmark VADs and the proposed VAD. 

Percentage Accuracy 

Added 

Noise 

SNR 

dB 

GSM 

VAD 

G.729 B 

VAD 

Sohn 

VAD 

Proposed 

VAD 

Babble 10 63.95 81.81 87.32 94.27 

 5 58.40 73.47 84.93 91.92 

 0 56.45 62.09 80.97 90.06 

Car 10 79.73 77.22 96.22 97.90 

 5 75.60 73.89 96.23 95.36 

 0 67.32 67.34 91.21 93.30 

Pink 10 72.89 81.01 84.89 95.92 

 5 71.90 72.65 83.13 92.95 

 0 57.50 63.90 79.08 91.32 

White 10 77.14 91.85 96.83 95.35 

 5 74.23 81.57 91.62 93.45 

 0 66.12 65.25 85.67 89.70 

Table 1 shows that the proposed VAD consistently 

outperforms the others, with an accuracy above 89% in all 

scenarios, and 97.9% with added car noise at 10 dB SNR.  

The GSM VAD performs best with added car noise, 

having an accuracy of 79.93% at 10 dB SNR.  Its accuracy 

rapidly falls as the SNR decreases, down to 56.45% with 

babble noise at 0 dB.  Similarly the G.729 B VAD, though 

performing better than the GSM, still declines rapidly with 

decreasing SNR.  Its best accuracy is 91.85% with added 
white noise at 10 dB, down to 65.25% at 0 dB.  The Sohn 

statistical model-based VAD does not perform as well as 

the proposed VAD, but is more reliable than the other two 

benchmark VADs, ranging from 96.22% with added pink 

noise at 10 dB to 91.21% with added pink noise at 0 dB. 

Figure 6 shows that the proposed VAD clearly 

outperforms the other benchmark VADs, with its accuracy 

consistently above the others at all SNRs. 
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Figure 6.  The percentage accuracy of the proposed VAD 

compared to the accuracies of the benchmark VADs used 

on samples with added babble noise at different SNRs. 

8. CONCLUSIONS 

In this paper a novel VAD based on the statistical chi-

square test has been proposed.  The VAD departs from the 

traditional heuristic nature of VADs by making a 

speech/noise decision based on deviations from the noise 

distribution.  On comparison with other benchmark 

VADs, the proposed VAD was found to provide the most 

accurate speech/noise classification for a range of SNRs 

and noise types. 
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