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ABSTRACT

We present a neurally inspired technique for detecting on-
sets in sound. The outputs from a cochlea-like filter are
spike coded, in a way similar to the auditory nerve. These
AN-like spikes are presented to leaky integrate-and-fire (LIF)
neurons through a depressing synapse. The spike outputs
from these are then processed by another layer of LIF neu-
rons. Onsets are detected with essentially zero latency. We
present results from the TIMIT database.

1. ONSETS, AND ONSET (CHOPPER) CELLS

We aim to provide features for sound source streaming and
interpretation. Biological systems far outperform current
systems. Thus modeling aspects of the biological system
seems a good way forward. We model aspects of the cochlea,
auditory nerve (AN) and cochlear nucleus, aiming to pro-
vide engineering insight into early auditory processing.

Onsets are rapid increases in energy. Different sound
sources have different types of onsets. Some are wideband,
with sudden co-occurring increases in intensity (e.g. per-
cussive sounds). Others are narrowband, with the increase
in energy in some small area(s) of the spectrum (e.g. a note
played on a flute). Some sound onsets are very rapid, (e.g.
a glass falling on to a stone floor), and others less so (e.g. a
note played on a flute). Every sound that starts has an onset,
and many have internal onsets (e.g. animal vocalisations,
such as human speech, or sequences of musical notes). The
energy increase may be anything between 10 and 100dB,
and there may be any pre-onset sound level.

Mammalian auditory systems are strongly attuned to on-
sets. The AN responds more strongly, with many neurons
in the cochlear nucleus also spiking strongly, at stimulus
start [1]. Ecologically, onsets provide a useful cue. The on-
set comes at the start of the sound (or of some change in
the sound), and is therefore useful for priming a response.
Onsets are relatively undamaged by reverberation, since the
onset in the received signal will normally be from the di-
rect path, and further onsets caused by reflections will be
smaller. Other cues such as offsets are severely smeared out
in time in reverberant environments.
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Onsets are a form of envelope modulation. Some cochlear
nucleus neurons sensitive to onsets are also sensitive to other
forms of envelope modulation, such as amplitude modula-
tion (AM) [1]. By altering the parameters used, the system
can detect AM, though this is not discussed here.

1.1. Onset detection

Onset detection systems have been used in music transcrip-
tion (e.g. [2]), sound segmentation [3], lip synchronisation
[4], monaural sound source streaming (e.g. [5]), and de-
termining when to measure ITDs for sound direction find-
ing [6]. On-line applications (e.g. real-time speech segmen-
tation, source streaming, sound direction finding, or music
transcription), may use the sound only up to the time of on-
set, and the detector latency becomes important.

Bandpassing the sound signal into many bands stops on-
sets in some small part of the spectrum from being over-
whelmed by the overall signal strength, unless it is in an
adjacent part of the spectrum. Also, it allows onsets found
to be characterised, by annotating them with the bands in
which they have been detected. This is important for tran-
scription, streaming, and direction finding applications.

The simplest onset detection techniques are based di-
rectly on signal energy, and were used to segment hummed
or sung notes [7] to improve note differentiation in early
music transcription systems. An alternative is to use first
order difference based estimates, (e.g. [8]), which take the
maximum of the rising slope of the amplitude envelope as
an index of onset. [2] uses the relative difference, calcu-
lating ∆I/I . Another variant is [9] which uses troughs in
loudness to segment sung notes. A different approach uses
optimal filter based techniques: [4] uses a wavelet based fil-
ter and [3, 10] use the difference between a long-term and
a short-term average. A related approach uses expectation
based techniques [11] to detect sudden increases in inten-
sity. Simple techniques tend to find only the most promi-
nent onsets, while techniques which rely on finding troughs
have a longer latency. Filter techniques can be optimised
for particular source types and reverberation characteristics,
and can perform well, but require a convolution, and can
have long latency.
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Fig. 1. Onset spike generation system. AN-like spike gen-
eration is shown for only three bands. Depressing synapses
and onset generation are shown for a single sensitivity level
for these three bands.

2. THE MODEL

The model we use is illustrated in figure 1. Sound from
a microphone (or sound file) is bandpass filtered, using a
Gammatone filterbank [5]. The filterbank response is simi-
lar to that of the basilar membrane in the Organ of Corti in
the cochlea: that is, the 6dB down point bandwidth is ap-
proximately 20% of the centre frequency. The filter density
provides considerable overlap between adjacent filters. An
important issue in filter design is delay: since we will be
using the output of each filter in conjunction with adjacent
filters, we would like the insertion delay to be similar for all
the filters. However, the Gammatone filter delay is propor-
tional to the reciprocal of the bandwidth [5]. Other filters,
such as OTA [12] have a more constant delay.

The spike based representation enables the system to
work over a wide dynamic range by using multiple spike
trains coding the output of each channel. Each spike codes
a positive-going zero crossing. Each spike train Si, for
i = 1 . . . N , (where N is the number of spike trains gener-
ated from a single bandpass channel) has a minimum mean
voltage level Ei that the signal must have reached prior to
crossing zero during the previous quarter cycle. If there are
N spike trains, these Ei are set by

Ei = DiE0 (1)

for i = 1 . . . N , for some E0 fixed for all bands. D was
set to 1.414, providing a 3dB difference between the ener-
gies required in each band. Note that if a spike is gener-
ated in band k, then a spike will be generated in all bands
k′ for 0 ≤ k′ ≤ k. This technique is similar to that used
by in [13], where Ghitza noted that it improved automatic
speech recognition in a noisy environment. This auditory
nerve-like representation enhances neither onsets, (unlike
the real mammalian auditory nerve) nor amplitude modu-
lation. However, the way in which it codes the signal can be

used to build a neurally inspired onset detection system as
shown in section 3.

The AN-like spikes are applied to depressing synapses
on onset neurons (figure 1), leaky integrate-and-fire (LIF)
neurons with depressing synapses. LIF neurons are the sim-
plest model neurons which maintain any semblance of the
temporal behaviour of real neurons: see [14], chapter 14 for
a review. The neurons used here are characterised by their
leakiness and refractory period. Each onset cell is inner-
vated by a number of auditory nerve-like spike trains. These
arrive from a number of adjacent bandpass channels, but all
have the same sensitivity (i.e. value of i in equation 1). Each
single post-synaptic potential is insufficient to make the on-
set neuron fire: a spike on more than one AN-like input is
required. The neurons used are leaky, so that these spikes
need to be nearly co-incident in time. This tends to reduce
the effects of noise (which might result in occasional but
uncorrelated firing in auditory nerve-like inputs in adjacent
channels). However, as the number of innervating channels
is increased, the post onset evoked post-synaptic potential
(EPSP) level can result in the onset cell firing.

A number of different models for depressing synapses
have been put forward (e.g. [15]). The primary effect is
that the first few spikes to arrive have a much larger effect
than those that follow soon after. This is a form of onset
enhancement. Hewitt and Meddis [16] suggested a form of
depressing synapse at the inner hair cell to spiral ganglion
dendrite synapse. We are not aware of work suggesting de-
pressing synapses in the cochlear nucleus, but depressing
synapses are very common in mammalian neural systems.
We use a three reservoir model [15, 16], and this enhances
the onsets in each spike train. The three reservoirs are pre-
synaptic (available), cleft (in use), and reuptake (used, but
not yet available again). The model parameters (the rates
of transfer between each reservoir) are set so that the first
few spikes result in near total depletion of the presynaptic
reservoir. For a strong enough signal, spikes will arrive at
approximately Fc spikes per second, where Fc is the cen-
tre frequency of the bandpass channel. However, an EPSP
will only be generated for the first few spikes. The recov-
ery time is set by the rate of transfer from the cleft to the
reuptake reservoir (which we keep constant), and from the
reuptake reservoir to the pre-synaptic reservoir. If this last
rate is low, then there will need to be a considerable gap in
AN signals before a new onset is marked. By adjusting this
parameter, we can change cells from being sensitive purely
to onsets to being sensitive to AM as well. If it is set too
high, the post onset EPSP (i.e. the EPSP produced by an in-
definite train of AN spikes) will be relatively high, resulting
in unwanted onset firing. For simplicity, we set the maximal
weight on each depressing synapse to the same level.
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3. RESULTS

We first present results from a brief section of a TIMIT ut-
terance [17]. We then investigate the relationship between
onsets found and the phoneme structure using the TIMIT
dataset.

In figure 2 we show the effect of processing a section of
a TIMIT utterance. The speech was filtered into 72 bands
between 100 and 4000Hz, with 20 AN-like spike trains for
each band, with a 3dB energy difference between each. Some
of these spike trains are shown in figure 2a. Onsets occur at
different times in different bands (see figure 2b). From this
image it is also clear that the onset is generally found later in
lower sensitivity bands (tracing the spikes in a single chan-
nel generally results in a line with positive gradient). This
is due to the finite length of actual onsets (from the start
of the sound to maximum intensity). Figure 2c shows a
summary of these onsets. This was produced by merging
together those onsets from the same channel but from dif-
ferent sensitivity bands which were judged to come from
the same source by virtue of occurring at approximately the
same time. This results in a considerable reduction in the to-
tal number of onset spikes, and is easier to use for analysing
what in the signal is causing the onsets.

The TIMIT database [17] is a database of short read ut-
terances in many US English dialects, and includes phonetic
transcriptions. We have correlated the onset times found
with the starts of the phonemes, and the results are shown in
table 1. Phoneme onsets may be missed because the onset

Phoneme type uttered identified % correct

affricative 1227 1179 96.1
fricative 12494 9596 76.8
nasal 8302 2153 25.9
semivowel 11852 6438 54.3
vowel 33410 24691 69.9
stop 15047 11494 73.9
total events 82556
false pos’ve 19022
selectivity 0.745

Table 1. Phoneme types in the 2700 TIMIT utterances pro-
cessed (30% female), and those detected (within 28ms of
recorded onset) by the onset detecting system. Selectivity is
defined as (correct)/(correct + false positives).

of this phoneme and the previous one overlap, or because
that phoneme does not start with an onset. Many of the
vowel, semivowel and nasals that are missed follow other
voiced sounds: finding the frequency modulation that marks
the change would require more or sharper filtering (as sug-
gested recently [18]). 82% of the fricatives that are missed
are v, th, f or dh. False positives may be found because
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(a) AN-like spike output for 13 selected channels logarithmi-
cally spaced between 100 and 4000Hz (lowest in bottom sub-
graph). Each subgraph contains 20 horizontal traces, with a dot
for each AN spike.
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(b) Onset cell firings (one dot per spike). Here, each subgraph
shows all the onsets found in a single sensitivity level, with low
frequency channels at the bottom, and high frequency channels
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(c) Summary onsets (see text)

Fig. 2. Effect of processing a 0.7 second long extract from
male utterance MJWT0SA1 from TIMIT dataset (2.57-
3.27seconds).

a single onset breaks into more than one due to slow rise
times, or because envelope variations inside a phoneme are
misidentified as onsets. Two particular stops (dx and q) ac-
count for 68% of the missed stops: we believe that these
stops are largely not associated with an increase in energy.
Most of the false positives occur inside vowels, with the re-
mainder inside sibilance or stops. The starts of almost all
sequences of voiced sounds (vowel, nasal and semivowel)
are found.
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4. CONCLUSIONS AND FURTHER WORK

The system modelled resembles the biological system, and
has some of the qualities of that system. The spiking AN-
like representation provides an effective early representa-
tion over a wide dynamic range, enabling onset detection
over this range. Because of the spiking nature of the sys-
tem, the latency is essentially that of the filterbank: indeed,
the onset pulses are essentially phase locked (see [6]). The
onsets detected fit with an informal definition of an onset.
We have investigated how this model’s onsets correspond to
phonemes in the TIMIT dataset: fricatives and affricatives
are largely detected, as are the starts of voiced sequences.
We believe that by using both onset and AM-onset together
neurons we can improve on the detection of vowel onsets
in [19] in terms of level dependence: this requires further
investigation. Further, using the spectro-temporal onsets
structure, and the AM-onset information we believe we will
be able to characterise fricative, voiced and stop onsets. The
model is currently implemented entirely in software: work
on VLSI implementation is ongoing [12].
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