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ABSTRACT

The ARMA filtered fractionally differenced Gaussian
Noise (FdGn) model and a new AR Filtered FdGn Added up 
model are applied to speech signal and performance of their 
parameters on speech Unvoiced/Voiced/Mixed/Silence
classification is evaluated against Zero Crossing Rate (ZCR)
feature. For parameter estimation of AR filtered FdGn model 
two methods were applied: iterative Maximum Likelihood 
(ML) method of Tewfik [2] and a new computationally
efficient Linear Minimum Square Error (LMSE) algorithm.
Also for parameters estimation of new Added up model two
approaches were implemented: an Expectation-
Maximization (EM) based approach and an iterative MSE
approach. The described models and methods were applied 
to speech signal and also its real Cepstrum. The performance 
of described models on V/U/M/S speech classification was
obtained based on J1 parameter in this order: Added up
model on real Cepstrum of speech, Filtered FdGn model on 
real Cepstrum of speech (LMSE method), Filtered FdGn
model on speech (LMSE method), ZCR, and Filtered FdGn 
model on speech (Tewfik method).

I. INTRODUCTION

In the most commonly used model of speech production, 
speech signal is decomposed into a time varying filter
component and an excitation component [13]. The excitation 
is represented by the superposition of two sources: periodic 
pulse train produced by vibration of the vocal cords and 
white Gaussian noise produced by forcing air past some 
constriction in the vocal tract. But this model lacks of the 
ability to observe the long term dependencies observed in
speech signal because of its ARMA statistical model [2]. In
other words it has been observed that by assumption of white 
noise excitation we can not interpret long term dependencies 
in speech signal.

To solve this problem, FBM (Fractionally Brownian
Motion) model is introduced by Mandelbrot and Ness[1]. In 
contrast with ARMA models which are characterized by 
correlation function that decay exponentially with the lag, 
FBM signals with f/1 -type spectra have a correlation 

function that decreases hyperbolically fast with the lag 

k as αk [2].

Because FBM is a non-stationary model, its derivative 
called Fractionally differenced Gaussian noise (FdGn) is
applied to speech. But the FdGn model seems not to discover
the short term dependencies of speech signal which could be
found out by poles and zeros of ARMA model. Hosking
([6]) solved this problem by presenting the FdGn AR filtered 
model. In this model the Gaussian excitation source is not 
assumed to be white at all, but it can also have weak
dependencies between far samples.

In this paper we applied the FdGn AR filtered model of 
Hosking to speech signal. In order to compute model’s
parameters, we used the iterative method of Tewfik ([2])
which searches for a local optimal in log likelihood surface 
of model parameters. Because of high computational
complexity of obtaining Log likelihood value, we present a
new fast method based on LMSE of )log( nnO
complexity. As we observed, this method not only runs so 
faster, but also obtains better results in speech V/U/M/S 
segmentation.

Finally, a new AR filtered FdGn added up model is 
presented which is an AR filtered of summation of a number 
of independent FdGn signals . In the case of speech signal
which is the superposition of the environmental white noise 
and signal of consecutive sounds, this model seems to be
able to discriminate between noise and two or more sounds 
contributed in composition of speech signal. We present two 
methods for parameters estimation of added up model. The 
first method uses EM approach to search for the optimal 
local point in the joint surface of log-likelihood model
parameters. We also applied another iterative method based
on MSE fitting. We applied the added up model on Real
Cepstrum of speech signal and obtained best results in 
V/U/M/S speech segmentation.

II. FDGN ARMA FILTERED MODEL

As we observe in figure 2.1, the output of an ARMA 
filtered FdGn model is built of a composition of ARMA
filtering and an FdGn filtering on white noise. As figure 2.1

suggested, the FdGn process can be defined as thd )(−
fractional difference (or summation) of discrete time white 
Gaussian noise ( 5.05.0 ≤≤− d ):
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Fig. 2.1: Diagram of FdGn ARMA filtered model
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where ][nw is white Gaussian noise. The continuous form of 

FdGn also can be defined as derivative of FBM:

)()( tx
dt

d
tx FBMFdGn =

where FBM is defined as a zero mean Gaussian process with 
the following correlation property :

( ){ } H
HHH stsBtBEB 22 )()()(,0)0( −=−= α

H is the Hurst parameter and is  related to d with equation 
5.0−= Hd . In the case of 5.0=H  general Brownian 

motion would be obtained. Equation 2.3 implies the value of 
variance and autocorrelation matrix of FBM process:
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In [5] it was proved that variance of FdGn with maximum 
Log-Likelihood value is equal to:

xdRx
N

T )(
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In [5] also an algorithm was presented to evaluate the Log-

Likelihood values of FdGn by complexity of )( 2NO . So for 

ML estimation of d,σ of FdGn process, it is enough to 

search in ]5.0,5.0[− for a value of d by a heuristic method 

like Maximum descent algorithm and then apply equation 
2.5 to estimate variance parameter with ML. Now we review 
Tewfik’s iterative approach and a new LMSE approach for 
FdGn AR Filtered parameters estimation.

II.A. Tewfik’s Iterative Approach

In this algorithm an initial value for para meters of the
ARMA filter and Hurst parameter and variance is selected. 
Then in k’th step, the observed vector, y[n], is filtered by 
inverse of ARMA filter whose parameters are

QjPijbia kk ≤≤≤≤ 1,1);(),(  to obtain )(nzk  and 

then according to Maximum Likelihood algorithm described

in [5] we find the new values 1+kH and 2
1+kσ  for FdGn 

model. Then we apply the inverse of FdGn filter with respect 

to 1+kH and 2
1+kσ to observed input vector, y[n], to obtain 

][nxk  and then according to Levinson’s algorithm, we find 

new values QjPijbia kk ≤≤≤≤++ 1,1);(),( 11 of

parameters of ARMA model. The algorithm will stop at k’th
step, if the difference norm of vector parameters between

two consecutive steps becomes less than a predefined value. 
In mathematical word:

( ) ( ) εσσ <−++++ kkkkkkkk HjbiaHjbia ,),(),(,),(),( 1111

No theoretical proof on computational complexity of this 
method has been found yet ([2]). 

II.B. New LMSE Algorithm 

In this algorithm we apply fundamental property 2.3 of
FBM process in order to estimate the parameters of ARMA 
filtered FdGn process. 

First of all, given the observed vector we implement the 
Levinson’s algorithm on it in order to estimate the
parameters of ARMA filter. Then according to the diagram 
of figure 2.1, we implement the inverse of ARMA filter in 
order to estimate the Fd Gn signal z[n].

Now for parameter estimation of Fd Gn signal, z[n], we 
estimate the original FBM process, b[n], from which the
Fd Gn signal z[n] is obtained by a summation on z[n]:

∑ =

∆
= n

m
mznb

1
][][

By applying equation 2.3 to equation 2.2.1 we have:

( ){ }( ) )log(2)log(][][log 2 nmHnbmbE −×+=− α
So for estimation of Hurst parameter, we estimate the

expectation in 2.2.2 and then we apply a MSE line on its log-
log curve. For best estimation of Hurst parameter, we can 

apply MSE line just in an interval [ ]maxmin ,nn  in domain 

of ][nf  defined in equation 2.2.3.
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As we observe in equation 2.2.3, the expressions of ][ng
is computable by an O(N) recursive manner where N is the 
number of samples in observed vector. For computation of 

][np we write:

{ }{ }2
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where ][nNΠ  is the rectangular window of size N.

According to 2.2.4, we observe ][np is computable in 

)log( NNO . So computational complexity of the

algorithm is )log( NNO which is so faster than Tewfik’s 

method.
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III.NEW AR FILTERED FDGN ADDED UP MODEL

In many physical applications and situations the observed 
signal is a summation of so many independent signals.
Especially it is the case when we are working with natural 
signals like speech. In many situations the sound which is 
pronounced is caused by the combination of some
consecutive letters ([8]) and hence if each letter alone has a 
special Hurst parameter, we expect the coming speech signal 
to have a combination of these Hurst parameters. This fact 
motivated us to define stochastic model below.

Let us{ }][],...,[],[ 21 nxnxnx K
be a set of independent

FdGn signals with Hurst parameters K
iiH 1}{ = and variance of 

{ }2
iα . Now we define FdGn added up random process

][ny  as:

∑ =
= K

i i nxny
1

][][

and AR Filtered FdGn added up model as AR filter of y[n].
Equation 3.1 implies that ][ny is also a zero mean Gaussian 

signal with covariance matrix as:

∑ =
= K

i Hiy nRnR
i1

2 ][][ α

where ][nR
iH is covariance matrix of a normal FdGn with 

corresponding Hurst parameter of iH . Here we present two 

iterative methods in order to estimate parameters { }2
iα

and }{ iH of model according to an observed vector.  In both 

of methods we assume the coefficients of AR filter were 
estimated by applying Levinson’s algorithm and so we have 
estimated FdGn added up signal y[n].

III.A. Iterative Expectation Maximization Estimator

A robust ML estimator could be applied in }{ iH and{ }2
iα

estimation by a search in the space of [ ] KK R+1,0 and using 

equation 3.2. Here we apply an Expectation Maximization
(EM) method in order to decrease dimension of ML search 
from 2R to 2. For details and proof of EM you can refer to 
[9] and [10].

Defining a complete vector { }K

ii nx 1][ =  from observed

incomplete vector ][ny  with relation (3.1), expected value 

of log likelihood of complete vector with respect to

parameters },{ ii dα is  computable as:
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where },{ k
i

k
i dα is k’th estimation of parameters. As we 

observe in equation 3.1.1, for maximization of

])[],...,[( 1 nxnxQ K we can maximize each of ])[( nxQ j

independently. Hence comple xity for each iteration of EM

would be linear with K . For estimation of ])[( nxQ j we

have:
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Now for computation of correlation matrix of ][nx j  by 

knowledge of ])[},,({ nyd k
i

k
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value:
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Note that expression 3.1.4 just needs to be computed once 
for each iteration of EM algorithm. For maximization of

])[( nxQ j , we can apply an iterative manner like maximum 

descent gradient method.

III.B. Iterative Minimum Square Error Estimator

By definition of:
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we observe summation of observed vector is equal to
summation of some independent FBMs with corresponding 

}{ iH and { }2
iα  parameters. So According to equation 2.3, we 

can write:
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We apply equation 2.3.3 again in order to estimate
function r[m] by the complexity of O(NlogN). Now we
present an iterative algorithm based on 3.2.2 and 2.2.2 for 
model’s parameters estimation. The algorithm starts with an 

initial estimation of parameters: { })0()0( ,
ii

βα  which satisfies 

equation 3.2.2 for just some supposed small scales. Then in 
m’th level we estimate expression 2.3 for each scale and all 
values of i=1,..,K:
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Table 1. Numerical Result of each method on best initial parameters: degree of AR filter, interval,..
Method Tewfik  method with 

AR(10)
ZCR with
AR(1)

LMSE AR(11)  on interval 
[10,300]

Real Cepstrum LMSE on
interval [10,470]

Real Cepstrum MSE Added
up(3) on [1,600]

J1
value

0.35 0.53 1.74 2.18 3.47
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Then an MSE line is fit to log-log curve of ][ˆ )( nr m
i in

order to obtain new estimations )1( +m
iβ  and )1( +m

iα . The

condition of stopping the algorithm at M’th level is the
same as algorithm described in II.A. As we observe in 
equation 3.2.3, the algorithm takes a recursive

)(NO manner in order to obtain ][ˆ )( nr m
i  according to its 

previous values. So each iteration of algorithm has the
complexity of )(KNO . We couldn’t proof convergence of 

proposed algorithm but our simulations proved so higher 
speed of convergence of this method than that of EM 
method.

For estimation of the number of independent
components, K, we apply our algorithm for small values of 
K initially and increase it until a value where two estimated 

Hurst parameter iH  and jH are found for which

difference is less than a predefined value. 

IV. EXPERIMENTAL RESULTS

For performance evaluation of models and methods
explained in this paper, a database of Persian speech files 
recorded from a male speaker, sampled at 8KSample/Sec
and quantized by 16 bits were used in speech V/U/M/S
segmentation. The evaluator of each model’s performance 

in speech segmentation was 1J  parameter defined as

follow:

)( 1
1 BWtraceJ −=

where W is within class scatter matrix and B  is between 
class scatter matrix. For implementing models, speech
signal was divided into 20msec frames in order to take the 
AR filter on it. Numerical results proved the best window
size for taking Fd Gn model is 60msec (480 samples) 
except for Added up model which is 75msec(600 samples).
We also apply all the models on Real Cepstrum of speech 
signal. The results are presented in Table 1. 

As we observe, the best result was obtained by an Added
up model of 3 independent FdGn signals on Real Cepstrum 

of 600 samples speech signal(3.47). FdGn AR filtered 
model obtained worse result than ZCR feature by Tewfik’s
method(0.35) but obtained better result by LMSE
approach(1.74). LMSE method even obtained better results
(2.18) on Real Cepstrum. Intervals [10,300], [10,470],
[1,600] in Table 1 represent best region found for MSE
line fitting on the curve in MSE based algorithms .

V. CONCLUSION

In this paper, FdGn based models and their applications 
in speech segmentation were discussed. A Fast

)log( NNO LMSE approach on parameters estimation 

of AR filtered FdGn model was presented and was
observed to obtain so better results than iterative ML based 
approach in speech V/U/M/S segmentation. A new AR
filtered FdGn Added up model was presented and two 
iterative algorithms were discussed for model’s parameters
estimation. MSE iterative method on parameters estimation 
of this model obtained best results on speech V/U/M/S 
segmentation and so suggests this model to be a acceptable
model in speech processing problems.
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