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ABSTRACT

In traditional voice activity detection (VAD) approaches,
some features of audio stream, for example frame-energy
features, are used for voice decision. In this paper, we 
present a general framework of visual information based 
VAD approach in multi-modal system. Firstly, The Gauss 
mixture visual models of voice and non-voice are designed, 
and the decision rule is discussed in detail. Subsequently, 
the visual feature extraction method for VAD is
investigated. The best visual feature structure and the best 
mixture number are selected experimentally. Our
experiments show that using visual information based 
VAD, prominent reduction in frame error rate (31.1%
relatively) is achieved, and the audio-visual stream can be 
segmented into sentences for recognition much more
precisely (98.4% relative reduction in sentence break error 
rate), compared to frame-energy based approach in clean 
audio case. Furthermore, the performance of visual based 
VAD is independent of background noise.

1. INTRODUCTION

Voice activity detection (VAD) is of great importance in 
many speech-processing systems. Traditionally, it is
performed based on some kinds of features of audio stream, 
for example, frame-energy [1] or entropy [2]. But the frame-
energy based approach is sensitive to noise because it is 
designed for audio detection, not voice detection
substantially. The entropy based approach pays more
attention to the spectral characteristic of voice, but it still
cannot deal with the environments with non-stationary
noise, for example, crosstalk noise.

Here we present a novel VAD approach using visual 
information. Recently, more and more attention is
abstracted by the multimodal interaction system, which 
uses visual modal, especially the movement of the
speaker’s lips, in addition to the audio modal for better 
perception performance or more intuitive expression.
When an audio-visual front-end is available, we can also 

use the visual modal for VAD. The mainly advantage is
that visual information is independent of background 
noise and tightly correlated with the speaker’s expression.

In this  paper, several key problems in visual based 
VAD are investigated: The visual features extraction
method for features that describing the lips movement 
properly, the models for voice and non-voice in visual 
feature space, and the decision rule. Furthermore, we 
define the frame error rate and the sentence break error rate 
for evaluating the performance of VAD. Then experiments
are performed for selecting the best visual features and 
models. Finally, the performance of visual information 
based approach is compared with frame-energy based
approach.

2. VISUAL MODELS AND DECISION RULE 

In general, VAD can be regarded as a two-class pattern 
recognition problem in a d -dim feature space. Firstly, the 
model of the voice class VC  and the non-voice class NC
are built. Then the decision rule should be selected.
Furthermore, we can take advantage of the characteristic of 
that the voice or non-voice segment is of long term
relatively for better detection performance.

In the frame-energy based approach, the dimension of 
feature E  is one. The classes are represented by their 
mean values ESµ  and ENµ . Given an audio frame, the
distances from the two classes to the frame-energy are
calculated in logarithmic domain for decision:

{ }VNcEd EcEc ,,lnln ∈−= µ . Then the simplest 

decision can be made by compare EVENE ddd −=∆
with zero. However, the frame-energy can be very low even 
in the voice segment, so the threshold-based method [3],
which uses high and low thresholds for decision, is often 
adopted in practice. The most important problem is to 
estimate the levels of noise and speech energy to compute 
the decision thresholds. In [4], fuzzy clustering is used for 
estimating the energy of voice and background noise
online, which leads to perfect VAD performance. 
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Figure 1. Visual models and decision rule for VAD

When the visual information is used, the visual
feature V  should be selected to represent the static or 
dynamic characteristic of the lips’ shape. (Visual feature 
extraction method will be discussed in section 3.) The 
feature dimension is more than one generally. Voice or 
non-voice model can be represented with some forms of 
probability distribution in the visual feature space. In our 
work, the non-voice model is represented with single
Gauss distribution (SGD), and the voice model is
represented with Gauss mixture distribution (GMD). It is 
because that the lips of the speaker distort slightly when 
keeping silence, but may appear several kinds of shape 
modes when speaking. The distances from the two classes
to the visual feature can be calculated as follows: 
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where M is the mixture number of voice model,
( )Sµ;•N  represents Gauss distribution function with 

mean vector µ  and covariance matrix S , and mw  is the
weight of the m -th Gauss mixture. For another approach, 
we can replace the summation in GMD by maximization:
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This approach is inclined to make decision between the 
non-voice model and the nearest mixture to it in the voice 
model. Detection performance of these two approaches is 
almost the same in practice. Then we calculate the
difference value VN ddd VVV −=∆  for decision. Here 
we use the same high threshold and low threshold of zero 
because the visual modal can distinguish between voice 
and non-voice perfectly. A demonstration of visual models 
and decision surface is shown in Figure 1.
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Figure 2. Block diagram of visual feature generation

3. VISUAL FEATURE EXTRACTION

A general framework of visual feature extraction is
illustrated in Figure 2. Given a video frame including the 
rough area of mouth, a cascade of algorithm steps is 
applied to it for the final visual features. Firstly, a lip-
tracking algorithm is applied to the video frame for the 
region of interest (ROI). Secondly, some kind of feature 
extraction method is applied to ROI for the original visual
feature IV . For the comparison of frame error rates with 
audio based VAD, we interpolated the original visual
feature for the same sample rate as the audio stream to get 
the interpolated visual feature IIV . Finally, IIV  is 
complemented with its first order deference for the final 
visual feature { }IIII VVV ∆= , . The feature extraction 
framework is mainly designed for audio-visual speech 
recognition. Here we use it for system consistency.

Primary component analysis (PCA) [5] is a widely
used data-driven linear transform in feature selection. It
takes advantage of prior knowledge for better data
describing. Here we use PCA for ROI extraction and 
feature extraction in a single step.

For finding the ROI in the rough area of lips, we seek 
in it using model matching. The model is built by finding 
the several main variation modes of ROI using PCA. Given 
the training frames labeled with ROI rectangles, we re-
sample the rectangle with M columns and N rows to get 
the vector R  with a dimension of MN . Firstly, the mean 
vector Rµ and the covariance matrix RS  are calculated.

Then the eigenvectors corresponding to the largest d
eigenvalues is selected as the column vectors of

( )dMN ×RP , which is the projection matrix to a d -dim
subspace that best describes the variation of the ROI
vector.  The fitness between a candidate ROI vector R
and the subspace is measured by calculating the Euclidean 
distance between them:

( ) ( ) ( )( ) 222
RRR µpRPµpRp −−−=D

where p is the vector that consists of the parameters 

determining the ROI. We assume that ( )θ,,, syx=p , the
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Figure 3. Examples of PCA feature rebuilding. 
The first two: Original ROI images. The last two: ROI 

images rebuilt with 6-dim PCA features

variables are: yx,  the central coordinates, s  the scale 

and θ  the rotation angle. Then the model matching can be 
represented as the following optimization problem.

( )pp p Dopt maxarg=
Because the derivative of dis tance function cannot be 

calculated analytically, we use downhill simplex method [6]
for numerical solution.

Once the ROI is extracted, the coordinates of ( )optpR
in the main variation subspace are selected as the
components of d -dim original visual feature vector

( )dccc ,,, 21 L=I
PCAV , where ( ) >−=< RiR pµpR ,optic

is the i-th component of the coordinates ( >••< , denotes

inner product), and Rip  is the i-th column vector of the 

projection matrix RP .
Practically, the feature dimension required in ROI

extraction is no more than 2. However, the dimension can 
be increased for describing the ROI more precisely. For
giving an intuitive demonstration of PCA features, we
rebuild the image of ROI with extracted feature in 6-
dimensional PCA subspace. Some examples of PCA feature 
rebuilding are shown in Figure 3. We can see that most 
useful information for distinguish the lip’s movement is 
carried by the 6-dim PCA visual feature.

The time complexity of visual feature extraction is very 
low because the ROI extraction and feature selection is 
accomplished in one step.

4. PERFORMANCE EVALUATION

The performance of VAD frond-end can be evaluated from 
several aspects according to different applications. In our 
work, two measures are defined for evaluation.

When used in speech communication or speech
coding, the most important measure of VAD performance 
is the frame error rate:

FMFFFE PPP +=
where FFP is false alarm rate defined as the percentage of 
the frames which detection to be voice but non-voice
actually, and FMP  is missed alarm rate defined as the 
percentage of the frames which detection to be non-voice
but voice actually, both relative to the total frames.

1RN 1RV 2RN 2RV 3RV 4RN3RN

1BP 2BP 3BP 4BP 5BP

Insertion   ErrorDeletion Error

Figure 4. A demonstration of sentence break errors (Top 
row: labeled sentence. Bottom row: detected result)

When used in automatic speech recognition (ASR) 
system, another important purpose of VAD is to break the 
audio stream into sentences for recognition. The sentence 
break performance will infect the understanding ability of 
the entire system evidently. Therefore, sentence break
error rate is defined to evaluate the break performance:

BIBDBE PPP +=
where BDP  is break deletion error rate, and BIP  is break 
insertion error rate (See Figure 4). The audio stream can be 
label into a series of segments, which are voice and non-
voice alternant, according to the correct labeled
voice: { }KK RNRVRNRVRN ,,,,, 1211 −K , where K  is 
the total non-voice interval number. Considering the VAD 
result, the midpoint of each non-voice segment is called 
sentence break point: { }LlBPl ≤≤1 , where L  is the 

number of non-voice interval in VAD result. Break
insertion errors appear if there is more than one sentence 
break points detected in a non-voice interval or more than 
zero sentence break points detected in a voice interval, and 
break insertion errors appear if there is not any sentence 
break point detected in a non-voice interval. We can 
calculate the deletion error number BDN  and insertion 

error number BIN  as follows:
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BPR 0

1,δ . BEP can

then be represented as ( ) KNN BIBD + . A
demonstration is shown in Figure 4.

5. EXPERIMENTS

Our bi-modal database in collected for Mandarin audio-
visual large vocabulary continuous speech recognition

I - 611

➡ ➡



Feature II
PCAV  (Interpolated PCA feature)

Dim 1 2 3 4 5 6

FEP (%) 15.51 3.99 3.87 3.93 3.92 3.90

Feature ( )II
PCA

II
PCAPCA VVV ∆+  (Final feature)

Dim 2 4 6 8 10 12

FEP (%) 4.36 9.71 7.11 7.02 6.80 6.69

Figure 5.  VAD performance comparison of different visual 
feature structures with SGD voice model

M 1 2 3 4 5

FEP (%) 3.87 3.37 3.38 3.44 3.40

BEP (%) 0.076 0.051 0.126 0.152 0.139

Figure 6. VAD performance comparison of different voice 
mixture numbers

research. It consists of video and audio of male speakers
uttering 863 training scripts (1560 sentences) for five times. 
The video is captured in color at a frame rate of 29.97Hz 
(NTSC). The audio is captured at a rate of 16 KHz using 16 
bits quantization. In our VAD experiments, 10% of the 
sentences are used for model training and the rest for 
testing.

The first experiment is performed for selecting the best 
visual feature structure and the best mixture number of 
voice mo del. Firstly, we build both the non-voice model 
and the voice model with one mixture (single Gauss model) 
in variant visual feature spaces for selecting the best 
visual feature structure. The results are listed in Figure 5.
In this experiment, only frame error rates are compared. We
can see that the frame error rate is minimized when 3-dim
interpolated PCA feature is used. Subsequently, the
mixture number of voice model is selected by testing both 
the frame error rate and the sentence break error rate using 
3-dim interpolated PCA feature, the results are listed in 
Figure 6.We can see that the 3-dim interpolated PCA 
feature and the voice model of 2 Gauss mixtures leads to 
the best performance. It is noticeable that more complex 
model or feature doesn’t always leads to better
performance because that more disturb is also introduced.

The second experiment is performed to compare the 
performance of our visual information based VAD and
traditional frame-energy based VAD. In the latter approach, 
fuzzy clustering and Bayesian criterion based threshold 
estimation [3] is used. The results are listed in Figure 7. We 
can see that the frame error rate and sentence break error
rate of visual based VAD are lower than those of frame-
energy based VAD prominently.

6. CONCLUSIONS

Method  Frame energy 
based

Visual
Based

Relative
reduction

FEP (%) 4.73 3.37 31.1%

BEP (%) 3.235 0.051 98.4%

Figure 7 VAD performance comparison of frame energy 
based method and visual based method

The introduction of visual information shows us a
completely new and effective approach in VAD because of 
the information carried by the lips’ movement is highly 
correlated with the voice producing process of the speaker.
The visual information based VAD framework discussed in 
this paper can be implemented with many kinds of visual 
features and corresponding decision rule. Experiments
show that visual information based VAD works better than 
energy-based method in both the frame detection
performance and the sentence break performance. It is 
remarkable that the sentence break error is almost avoided, 
which means that the multi-modal stream can be
segmented into sentences for recognition very closely to 
the speaker’s expression units.

Furthermore, visual information cannot be affected by 
the background noise, which leads to perfect robustness. 
Future work can be focused on the combined VAD using 
both audio and visual information. 
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