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ABSTRACT
This paper presents a new approach toward automatic annotation
of meetings in terms of speaker identities and their locations. This
is achieved by segmenting the audio recordings using two inde-
pendent sources of information: magnitude spectrum analysis and
sound source localization. We combine the two in an appropriate
HMM framework. There are three main advantages of this ap-
proach. First, it is completely unsupervised, i.e. speaker identities
and number of speakers and locations are automatically inferred.
Second, it is threshold-free, i.e. the decisions are made without the
need of a threshold value which generally requires an additional
development dataset. The third advantage is that the joint segmen-
tation improves over the speaker segmentation derived using only
acoustic features. Experiments on a series of meetings recorded in
the IDIAP Smart Meeting Room demonstrate the effectiveness of
this approach.

1. INTRODUCTION

Answering a question such as ”who is speaking and at what
place?” is an important step toward automatic summarization of
meetings. For example, based on this knowledge, a user could
query a structured database to show “the last presentation made
by such person” or “the last meetings attended by such person”.
Conversely, a user may simply want to know who attended a meet-
ing that he missed. Globally such structuring of meeting record-
ings also greatly enhances the playback experience, as the user can
quickly access information that is relevant to him (survey in [1]).

In the current work, we propose to segment meeting record-
ings in terms of both speaker identity and speaker location. To
the best of our knowledge this has not been tried before. To
achieve this, we combine ideas from two schemes that have shown
good performance in past work : unsupervised mel frequency cep-
stral coefficient (MFCC) based speaker clustering [2] and location-
based speaker segmentation [3].

The speaker clustering approach proposed in [2] is a
GMM/HMM framework with minimum duration constraint. It
does not use any tunable threshold/penalty term and is fully un-
supervised. In past studies it has shown robustness and good per-
formance on single channel signals, with relatively long speech
segments (at least several seconds) such as broadcast recordings.
However, the context here is quite different: real discussions
recorded in a meeting room. Speech segments are short and many
speaker changes occur, producing also overlaps. Therefore, it may
well be more difficult to train accurate speaker models and obtain
accurate speaker segmentation in such environment.

On the other hand, the location-based speaker segmentation
proposed in [3] is able to detect speaker changes very precisely,

using the sound source location as a discriminative information. It
has already been successfully tested on meeting environments. In
previous work, we assumed speakers in a meeting would remain
at the same location, and therefore we achieved location-based
speaker segmentation. But in real meetings people may stand up
and move e.g. to the presentation screen. Moreover, across sev-
eral meeting recordings, attendance varies and obviously the same
person may be seated at different locations. So speaker identity
cannot be obtained from the location information.

In this paper, we propose to exploit the complementarity of
the two schemes: location information is expected to improve the
speaker segmentation, thus allowing acoustic clustering to provide
speaker identities. The main contributions of this paper are, first,
an unsupervised approach for joint clustering and segmentation
of speaker identity and location, and secondly, a simple standard
deviation-based criterion for determining the number of active lo-
cations in a meeting. Preliminary results on meeting recordings
show that the proposed combined approach provides promising re-
sults and improves the speaker segmentation.

Section 2 describes how acoustic and location features are ex-
tracted. Section 3 explains speaker clustering and location clus-
tering schemes separately as well as the combined scheme. Ex-
periments are presented and discussed in Section 4, followed by
concluding remarks in Section 5.

2. FEATURE EXTRACTION

Recordings were made with a circular 8-microphone array and 4
lapel microphones. The array is used to extract the location fea-
tures, while the lapel microphones are used to extract the acoustic
features.

Note that in the following, “acoustic features” refers to fea-
tures derived from single-channel spectral analysis such as MFCCs
and LPCCs. “Location features” refers to features derived from
multi-channel cross-correlation analysis. For each time frame
(32ms Hamming-windowed, half-overlapping) we extract one
acoustic feature vector and one location feature vector.

2.1. Acoustic Features

At each time frame, we extract 24 MFCCs (without ��) from the
4 lapel waveforms, giving 4 concurrent streams of MFCCs. How-
ever, we need only one stream of MFCCs in order to use the algo-
rithms described in Sections 3.1 and 3.3. Therefore, at any given
time frame, we pick the MFCC vector from the lapel with the
maximum energy. Preliminary experiments showed that this ap-
proach is robust to various turn-taking patterns, including overlap-
ping speech. Results were much better compared to using MFCCs
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extracted from one microphone on the table. In order to avoid
switching between lapels too often, we low-pass filter the energy
from each lapel over consecutive frames. The whole operation is
fully automatic and produces one lapel change about every 6 sec-
onds on an average.

2.2. Location Features

We use the microphone array to locate the dominant sound source
at each time frame in terms of bearing : at each time � an estimate
���� ��� is produced where �� indicates azimuth and �� indicates
elevation. This is done on all frames (speech and silence). We
use a single source localization technique based on the SRP-PHAT
measure [4], due to its low computational requirements and suit-
ability for reverberant environments. For each time frame we scan
a grid � of possible locations (Cartesian coordinates), select the
point ��� � � having the maximum SRP-PHAT value, and extract
spherical bearing coordinates ���� ��� from ���. The radius esti-
mate is dropped because it is not reliable with a single microphone
array. The computation of ��� from the microphone array signals
has already been presented in [5].

3. CLUSTERING APPROACH

In this section, we present the acoustic-only speaker clustering and
the location clustering approaches, before presenting the proposed
combined approach.

3.1. Clustering Speakers

We employ the algorithm presented in [2], which is briefly sum-
marized in this section. The problem is formulated in an ergodic
HMM framework with minimum duration constraint.

If � � ���� ��� ������ �� � is the audio data to be segmented
(described in Section 2.1), we want to find the optimal number of
clusters	�

� and their respective Gaussian mixture models (GMM)
���

�
that produce the “best” segmentation of the data� according

to:
�
��

��

�
� 	

�

�

�
� ��� ��	

���� ����

 ��� ��������� � 	�� (1)

where ����� is the Viterbi path with the highest likelihood. There is
one state � for each speaker cluster. Thus, we want to find the set
of clusters and their acoustic models that maximize the likelihood
of the data; as well as the associated speaker segmentation based
on this HMM topology.

The algorithm starts with over-clustering the data, i.e. cluster-
ing the data in terms of more than the expected number of classes
(large initial value for 	�). This is followed by an agglomerative
clustering approach where best candidate clusters are merged in an
iterative fashion, trying to find a solution to Eq. 1.

In [2], we presented a merging criterion which always results
in an increase of the likelihood (right hand side of Eq. 1). Sum-
marizing the approach, if we want to decide if two clusters �� and
�� should be merged or not, we hypothesize another cluster ����

and model it with a number of parameters equal to the sum of the
number of parameters used in modeling individual clusters �� and
��. Then, we compare the likelihood of the data in these two hy-
potheses. The important property of this approach is that it finds
the optimal number of classes according to an objective function
(Eq. 1) without the need of a tunable threshold/penalty term.

3.2. Clustering Locations

Using the location features described in Section 2.2, we partition
the physical space in a finite set of regions �� � � ���� where
		 is the number of location clusters. We assume that speakers
do not move continuously from one region to another (denoted
“static” assumption in the following). Practically this means a
speaker can often move within a region (e.g. around a seat, or
around the white-board) but rarely moves from one region to an-
other (e.g. from a seat to the white-board).

One could use the same GMM/HMM framework as used for
speaker clustering (Section 3.1). However, we are looking for a
partition of the 2D space ��� �� into simple, convex regions. This
leads to modeling with single Gaussian rather than GMMs: using
the GMM framework and the merging criterion presented above
would lead to non-convex clusters, i.e. each cluster potentially
containing various, non-connected regions of the space.

Since we model each region of the space with a single Gaus-
sian, the simplest algorithm to use is K-means, applied on the
���� ��� location features. The distance metric used in the K-means
is the angle between two bearings ���� ��� and ���� ���.

Within this framework the issue is model selection : how can
we choose 		 properly? From the “static” assumption we can
expect very concentrated “true” clusters in the data. We therefore
define a simple standard deviation-based criterion:

��
���
���
����� �

���
���

�
��� (2)

where ���� is the standard deviation of ���� belonging to cluster
�. If we exclude the trivial case of clusters containing only one
sample, we expect that:

� when 		 is too small, at least one cluster spans over 2 or
more “true” clusters, therefore leading to a large standard
deviation value for that cluster. This in turn leads to a large
� value.

� when 		 is too large, the number of terms in the sum will
be large so � will be large.

Therefore, this criterion balances good fit of each cluster by
a Gaussian (i.e. large 		 value) and small number of terms in
the sum (i.e. small 		 value). The algorithm we implemented
simply tries all values from 		 � 
 to a large value e.g. 		 �
�� and selects the 		 value yielding the partition with minimum
��
���

���
����� as shown in Figure 1.

The fact that we use azimuth only for the model selection cri-
terion while we use both azimuth and elevation for the K-means
distance is based upon two contradicting practical issues in our
setup:

� Azimuth is expected to be the most discriminative feature
considering both the horizontal planar geometry of the mi-
crophone array and the locations of the speakers.

� During silence periods, the dominant sound source is a pro-
jector, located above the table. Hence elevation is needed
in the K-means distance to discriminate speakers from the
projector.

3.3. Combined System

The problem is formulated as follows: if 	� is the number of
speaker classes (for the acoustic stream) and 		 is the number
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Fig. 1. The value of ������
������

�
�� as a function of the number

of location clusters. The minimum occurs at �� � �.

of location classes (for the location stream), we try to segment
the two streams jointly, in terms of �� � �� classes. In other
words, we define a class for each possible active speaker at each
possible location. An important point is that many of these classes
may not be represented at all in the data - each speaker does not
necessarily visit all locations. This is why in the following we
opted for training speaker models separately from location models.

In order to achieve the joint segmentation, we propose a 2-step
algorithm:

� In the first step we partition locations using the algorithm
presented in Section 3.2. From the obtained partition
��� � � ����� we define a single Gaussian probability den-
sity function (pdf) as a model for each location cluster �.
We use the K-means cluster centroid and cluster standard
deviation to define that Gaussian pdf. These pdfs are un-
modified in the next step.

� In the second step we use a modified version of the algo-
rithm presented in Section 3.1, running in an iterative man-
ner i.e.:
1. Joint (speaker, location) Viterbi segmentation.
2. Speaker models retraining.
3. If speaker models merging is possible then merge and go
back to 1. Else stop.

For the joint Viterbi segmentation, we assume independence
between speaker location and speaker identity. The pdf of each
state ����� ����� is therefore:

������ ��������� ����� � ����������� ������������ (3)

where ��� and ��� � �� � � ���� are respectively an acoustic fea-
ture vector and a speaker state, while ���� and ���� � �� � � ����
are respectively a location feature vector and a location state.

4. EXPERIMENTS AND EVALUATION

4.1. Data

6 four-people meetings were recorded in the IDIAP Smart Meeting
Room [6], each meeting lasting about 5 minutes. The four partic-
ipants of each meeting were selected randomly from a set of 6
people. These meetings are part of a corpus that is fully described
in [7], and can be viewed online at http://mmm.idiap.ch.
For each meeting, people were asked to talk freely while follow-
ing a short list of actions in the set � monologue, discussion, note-
taking, presentation, white-board �. Participants were seated most

W

PTable

S

S S

S

MA

Fig. 2. Recording setup. “S” denote participants’ seats, “P” pre-
sentation screen, “W” the white-board and “MA” the microphone
array.

of the time but sometimes one stood up, walked to a different loca-
tion and made a presentation. 12 microphones were used: a circu-
lar 10 cm-radius 8-microphone array fixed to the table and 4 lapel
microphones. We used the 8-microphone array to extract location
features as explained in Section 2.2 and the 4 lapel microphones
to extract acoustic features as explained in Section 2.1. The room
setup is shown in Fig. 2.

To evaluate the speaker segmentation performance, a precise
ground-truth (GT) segmentation of the recordings was created by
an independent observer. There are 6 GT speaker clusters and
1 GT silence cluster. Each GT cluster is segmented independently
in terms of “activity” and “non-activity”. In other words:

� In the case of a GT speaker cluster, “active frame” means
that this person is speaking - which does not exclude the
possibility of other speakers also being active. Indeed, the
data does have overlaps.

� In the case of the GT silence cluster, “active frame” means
nobody is speaking.

4.2. Metrics

As explained in Section 3.3 our scheme produces a single speaker
segmentation, therefore not allowing overlaps between speakers;
whereas the GT does include overlaps between speakers. In or-
der to compare with the GT, we transformed our single segmenta-
tion into a series of active/non-active segmentations, one for each
speaker cluster. The data contained very short speech segments,
50% of them being shorter than 960 ms. Therefore we could not
use the usual segmentation measures of precision and recall. Two
metrics were used: Frame accuracy (ACC) and Half-Total Error
Rate (HTER). ACC is the overall proportion of correctly classi-
fied frames. HTER is the average of False Alarm Rate (FAR) and
False Rejection Rate (FRR). FAR is the proportion of erroneous
frames in the active frames of the result. FRR is the proportion of
erroneous frames in the non-active frames of the result.

We used HTER to determine the best combinatorial match be-
tween GT speaker identities and result speaker identities.
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Fig. 3. Time-line of speech activity for the 6 speakers. “GT” row shows the ground-truth, while the “combined” and “acoustic-only” rows
show the respective results from the two systems. Each column spans over 1800 seconds of meetings.

4.3. Results

We first ran the acoustic clustering algorithm described in Sec-
tion 3.1 alone, then the combined system. While both systems
provided the correct number of acoustic clusters (6 speakers and 1
silence), the quality of the speaker segmentation was improved in
terms of both HTER and ACC, by using the combined system, as
shown in Table 1. Calulations show that the improvement in ACC
is statistically significant.

System HTER ACC
Acoustic Only clustering 19.2 92.6

Combined Clustering 17.3 94.6

Table 1. Speaker segmentation performance. HTER and frame
accuracy (ACC) are expressed as percentages.

The actual speaker segmentation results and ground-truth are
shown in Fig. 3. It shows the entire speech/silence time-line for
each speaker. This high-level view shows the concatenation of the
6 meetings, in other words it shows how usable the results are to
answer the question “who attended that meeting?”. Improvement
brought by the combined system is clearly visible for speakers
#1 and #2, while results for the other speakers are similar to the
acoustic-only results.

We also looked at the locations determined by the K-means
clustering in the combined system. As shown in Fig. 1, the al-
gorithm chose to partition the space into �� � � regions. The
centroid values given by the K-means algorithm corresponded to
the 6 main speaker locations shown in Fig. 2 plus the projector.
The projector cluster was expected as it is a dominant source of
energy during silence.

5. CONCLUSION

We have proposed an unsupervised approach for segmenting meet-
ing recordings jointly in terms of speaker identity and speaker lo-
cation. Such a segmentation is important in the context of brows-
ing or searching a meeting corpus. The proposed combined ap-
proach is fully unsupervised, and free of any tunable threshold.
The main achievement of this work was to automatically infer the
number of clusters for both speaker and locations as well as the
joint segmentation. In our experiments, we observed that the pro-
posed combined approach also improves speaker segmentation, as
compared with the acoustic only clustering. Experiments were car-
ried out on a set of meetings recorded with both close-talking and

distant microphones.
Future work will explore the analysis of concurrent speakers:

overlapping speech occurs regularly in meetings. It was shown in
previous work that location-based analysis has a strong potential
for this. A second direction is toward continuous tracking, as op-
posed to the discrete partition of locations used here. Finally, more
comprehensive testing will be undertaken to further illustrate the
relevance and robustness of our approach.
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