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ABSTRACT

A novel approach for content based audio classification
is presented based on multiscale spectro-temporal modu-
lation features extracted using a model of auditory cortex.
The task is to discriminate speech from non-speech which
consists of animal vocalizations, music and environmental
sounds. Generalization of the system to signals in high level
of additive noise and reverberation is evaluated and com-
pared to two existing approaches. The results demonstrate
the advantages of the auditory model over the other two sys-
tems, especially at low SNRs and high reverberation.

1. INTRODUCTION

Audio segmentation and classification have important appli-
cations in audio data retrieval, archive management, mod-
ern human–computer interfaces, and in entertainment and
security tasks. In speech recognition systems designed for
real world conditions, a robust discrimination of speech
from other sounds is a crucial step. Speech discrimination
can also be used for coding or telecommunication applica-
tions where non-speech sounds are not of interest and hence
bandwidth is saved by not transmitting them or by assigning
them a low resolution code.

Two state-of-the-art systems have been proposed,
against which we shall compare our system. The first
is proposed by Scheirer and Slaney [1] in which thir-
teen features in time, Frequency, and cepstrum domain are
used to model speech and music. The second system is
a speech/non-speech segmentation technique [2] in which
frame-by-frame maximum autocorrelation and log-energy
features is measured, sorted and then followed by a linear
discriminant analysis and a diagonalization transform.

As with other pattern recognition tasks, the first step in
this audio classification is to extract and represent the sound
by its relevant features so as to capture the discriminative
properties of the sound, and to resist distortion under var-
ious noisy conditions. The novel aspect of our proposed
system is a feature set inspired by investigations of various

stages of the auditory system [3]. The features are com-
puted from an auditory model that maps a given sound to
a high-dimensional spectro-temporal modulations modeled
after the auditory cortical representation. A key component
of the approach is a multilinear dimensionality reduction
method which by making use of multimodal characteristic
of cortical representation, effectively removes redundancies
in each subspace separately (section 3).

2. AUDITORY MODEL

The computational auditory model is based on neurophysio-
logical, biophysical, and psychoacoustical investigations at
various stages of the auditory system [3][4][5]. It consists
of two basic stages. An early stage models the transforma-
tion of the acoustic signal into an internal neural represen-
tation (auditory spectrogram). A central stage analyzes the
spectrogram to estimate the content of its spectral and tem-
poral modulations (Figure 1)[4]. This stage is responsible
for extracting the key features upon what the classification
is based.

The early stages of auditory processing are modeled as
a sequence of three operations [3]. The acoustic signal en-
tering the ear produces a complex spatiotemporal pattern of
vibrations along the basilar membrane of the cochlea. The
basilar membrane outputs are then converted into inner hair
cell intra–cellular potentials. This process is modeled as
a 3–step operation: a highpass filter (the fluid–cilia cou-
pling), followed by an instantaneous nonlinear compression
(gated ionic channels), and then a lowpass filter (hair cell
membrane leakage). Finally, a lateral inhibitory network
detects discontinuities in the responses across the tonotopic
axis of the auditory nerve array. Higher central auditory
stages (especially the primary auditory cortex) further an-
alyze the auditory spectrum into more elaborate represen-
tations, interpret them, and separate the different cues and
features associated with different sound percepts. Specifi-
cally, from a conceptual point of view, these stages estimate
the spectral and temporal modulation content of the audi-
tory spectrogram. They do so computationally via a bank
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Fig. 1. Schematic of the auditory processing. Sound is analyzed by a model of the cochlea filter bank(left) , each filter output is then half–
wave rectified and lowpass filtered by an inner hair cell model. A spatial first–difference operation is then applied mimicking the function
of a lateral inhibitory network (LIN). The auditory spectrogram is then analyzed by a bank of spectro-temporal modulation selective filters.
The total output as a function of time from the model is therefore indexed by three parameters: scale , rate, and frequency.

of modulation-selective filters centered at each frequency
along the tonotopic axis. It has a spectro-temporal impulse
response (usually called Spectro-Temporal Response Field
– STRF) in the form of a spectro-temporal Gabor function
which effectively results is a multi-resolution wavelet anal-
ysis of auditory spectrogram. All parameters of this model
are derived from physiological data in animals and psychoa-
coustical data in human subjects [3][6] .

Unlike conventional features, our auditory-based fea-
tures have multiple scales of time and spectral resolution.
Some respond to fast changes while others are tuned to
slower modulation patterns; A subset are selective to broad-
band spectra, and others are more narrowly tuned. For this
study, temporal filters (Rate) from 1 to 32Hz and spectral
filters (Scale) from 0.5 to 8.00 Cycle/Octave were used to
represent the spectro-temporal modulations of sound.

3. MULTILINEAR ANALYSIS OF CORTICAL
REPRESENTATION

The output of the auditory model is a multidimensional ar-
ray. For our purpose here, the time dimension is averaged
over a given time window which results in a three mode
tensor for each time window with each elements represent-
ing the overall modulations at corresponding frequency, rate
and scale (128(frequency channels)×26 (rates)×6 (scales).
Traditional dimensionality reduction methods like principal
component analysis (PCA) are inefficient for multi dimen-
sional data because they treat all the elements of the feature
space similarly without considering the varying degree of
redundance and discrimination contribution of each mode.
Instead, it is possible using multi-dimensional PCA to tai-
lor the amount of reduction in each subspace independently
of others based on the relative magnitude of correspond-
ing singular values and discriminative contribution of each
mode. It also results in reducing the amount of training sam-

ples and computational load significantly since each sub-
space is considered separately. To generalize the concept
of PCA to multidimensional tensors, we consider a general-
ization of SVD to tensors (Higher Order SVD [7]) . Every
(I1 × I2 × ...× IN )–tensor A can be written as the product

A = S ×1 U (1) ×2 U (2)... ×N U (N) (1)

in which U (n) is a unitary matrix containing left singu-
lar vectors of mode–n unfolding of tensor A, and S is a
(I1 × I2 × ... × IN ) tensor which has the properties of all–
orthogonality and ordering. Lathauwer et al. shows [7] that
the left singular matrices of the different matrix unfolding
of A correspond to unitary transformations that induce the
HOSVD structure which in turn ensures that the HOSVD
inherits all the classical space properties from the matrix
SVD. HOSVD results in a new ordered orthogonal bases
for representation of the data in subspaces spanned by each
mode of the tensor.

The auditory model transforms a sound signal to its cor-
responding time-varying cortical representation. Using a
comprehensive training set, a new multilinear and mutually
orthogonal principal axes can be found that approximate the
data in a low–dimensional space. The resulting data tensor
D, obtained by stacking all training tensors is decomposed
to its mode–n singular vectors:

D = S×1 Ufrequency×2 Urate×3 Uscale×4 Usamples (2)

Each singular matrix is then truncated by setting a pre-
determined threshold. New sound samples are first trans-
formed to their cortical representation, A, and are then pro-
jected onto these truncated orthonormal axes U

′
freq., U

′
rate,

U
′
scale:

Z = A ×1 U
′
freq.

T ×2 U
′
rate

T ×3 U
′
scale

T
(3)

The resulting tensor Z whose dimension is equal to the to-
tal number of retained singular vectors in each mode (7 for
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Auditory Model Method one Method two

Speech 100% 99.3% 94.4%
Non-speech 100% 99.1% 93.05%

Table 1. Percentage of correct classification for time win-
dow of one second

Auditory Model Method one Method two

Speech 100% 97.3% 93.7%
Non-speech 98.9% 98.2% 90.6%

Table 2. Percentage of correct classification for time win-
dow of half a second

frequency , 5 for rate and 3 for scale dimensions) is used for
classification.

Classification was performed using a Support Vector
Machine (SVM) [8]. Radial basis function (RBF) were used
as SVM kernel and were adjusted so as to minimize the er-
ror mean square and error variance of training set.

4. EXPERIMENTAL RESULTS

4.1. Audio Database

An audio database was assembled from five publicly avail-
able corpora. Speech samples were taken from TIMIT
Acoustic–Phonetic Continuous Speech Corpus. For train-
ing, 300 samples were selected from TIMIT’s training sub-
set. For test purpose, 150 different sentences spoken by 50
different speakers (25 male, 25 female) were selected from
TIMIT’s test subset. Sentences and speakers in training and
test sets were different.

To make the non-speech class as comprehensive as pos-
sible, animal vocalization from BBC Sound Effects audio
CD collection, Music samples from RWC Genre Database
[9] and Environmental sounds from Noisex and Aurora
databases were assembled together. The training set in-
cluded 300 speech and 740 non-speech samples and the test
set consisted of 150 speech and 450 non-speech samples.
The length of each utterance in training and test is equal to
the selected time window (e.g. one one–second sample per
sound file). 1

4.2. Comparison and results

To evaluate the robustness and the ability of system to
generalize to unseen noisy conditions, we conducted a
comparison with two state–of–the–art studies, one from
generic–audio analysis community by Scheirer and Slaney
[1] and one from automatic–speech–recognition community
by Kingsbery et al. [2].

The first system derived thirteen features in time, fre-
quency and cepstrum domain to form two models for speech
and music. To eliminate performance differences due to the

1The list of files and offsets are available from the authors.
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Fig. 2. Percentage of correct classified speech in white noise for
auditory model, multi–feature [1] method and voicing–energy [2]
method.
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Fig. 3. Percentage of correct classified speech in pink noise for
auditory model, multi–feature [1] method and voicing-energy [2]
method.

use of different classifiers, an SVM was used in all com-
parisons. Our implementation of the system was first evalu-
ated on the original database and comparable, if not better,
results were obtained with SVM compared to the original
publication. A second system was tested that was based on
an audio segmentation algorithm described in [2]. In the
proposed technique, the degree of voicing and frame–level
log–energy value were used as features. Several frames of
these features were sorted in increasing order and concate-
nated, and was reduced to two dimensions by an LDA fol-
lowed by MLLT. Our evaluation of the system suggested
that direct classification of the original sorted vector with
an SVM classifier outperformed the one in reduced dimen-
sion. For this reason, the classification was performed in the
original feature space.

Our auditory model and the two algorithms from the
literature were trained and tested on the same database.
One of the important parameters in any such speech detec-
tion/discrimination task is the time window or duration of
the signal to be classified. Table 1 and 2 shows the effect
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Fig. 4. Percentage of correct classified speech in reverberation for
auditory model, multi–feature [1] method and voicing-energy [2]
method.

of time window length on performance of the classifiers.
Fixing the time window to one second, a series of tests
were conducted to evaluate the generalization of the three
methods to unseen noisy and reverberant speech. Classi-
fiers were trained solely to discriminate clean speech from
non-speech and then tested in three conditions. In each test,
the percentage of correctly detected speech was considered
as the measure of performance. For the first two tests, white
and pink noise were added to speech with specified signal to
noise ratio (SNR). The detection results for speech in white
noise (Figure 2) demonstrate that while the three systems
have comparable performance in clean conditions, the audi-
tory features remain robust down to fairy low SNRs. This
pattern is repeated with additive pink noise although perfor-
mance degradation for all systems occurs at higher SNRs
(Figure 3). To examine the effect of different levels of re-
verberation on the performance , a realistic reverberation
condition was simulated by convolving the signal with a
random gaussian noise with exponential decay. Figure 4
shows the performance of the systems in this condition.
On the whole, the data demonstrate the significant robust-
ness of the auditory model.

5. SUMMARY AND CONCLUSIONS

An spectro-temporal Auditory method for audio classifica-
tion and segmentation has been described, tested and com-
pared to two state-of-the-art alternative approaches. The
method employs features extracted by a biologically in-
spired auditory model of auditory processing in the cortex.
The drawback of such a representation is its high dimen-
sionality, and hence to utilize it, we developed and effi-
cient multi-linear dimensionality reduction algorithm based
on HOSVD of the multimodal data. The comparison with
alternative systems demonstrate that the proposed system
generalizes well to novel situations, an ability that is lack-
ing in many of today’s audio and speech recognition and

classification systems.
This work is but one in a series of efforts at incorporat-

ing multi–scale cortical representations (and more broadly,
perceptual insights) in a variety of audio and speech pro-
cessing applications. For example, the deterioration of the
spectro-temporal modulations of speech under any kind of
linear or non–linear distortions, can be used as an indicator
of predicted speech intelligibility [6]. Similarly, the multi–
scale rate–scale–frequency representation can account for
the perception of complex sounds and perceptual thresholds
in a variety of settings [10], and finally, the auditory model
can be readily adapted and expanded for a wide range of
applications such as the automatic classification and seg-
mentation of animal sounds [11], or an efficient encoding
of speech and music [12].
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