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ABSTRACT

The Voice Activity Detection (VAD) problem is placed into a de-
cision theoretic framework, and the Gaussian VAD model of Sohn
et al. is then shown to fit well with the framework. It is argued that
the Gaussian model can be made more robust to correlation and
expected spectral shapes of speech and noise by using a differen-
tial spectral representation. Such a model is formulated theoreti-
cally. The differential spectral VAD is then shown by experiment
to compare favourably with the basic Gaussian VAD in a speech
recognition setting, especially for noisy environments.

1. INTRODUCTION

Voice Activity Detection (VAD) is important in various applica-
tions involving speech. Perhaps the most common application is
in telecommunications, where the main reason for the VAD is to
save bandwidth by not transmitting non-speech portions of the in-
put signal. Marzinzik and Kollmeier [1] present a useful recent
review of the subject.

We are interested in (VAD) for the purpose of Automatic Speech
Recognition (ASR) in general, and noise robust ASR in particular.
VAD is important in ASR because it distinguishes the non-speech
portions at the beginning and end of an utterance from the utter-
ance itself. In doing this, the VAD ensures that the decoder, which
is computationally intensive, only runs when necessary. This point
is particularly important in embedded applications, where process-
ing power is limited. The main difference between a VAD used in
telecommunications and one used in ASR is that the latter typi-
cally uses a state machine in order to avoid false detections and to
remain active during speech pauses.

A VAD working in the spectral domain, and with an appeal-
ing statistical basis, has been introduced by Sohn e al. [2, 3].
This spectral VAD has been shown to be superior to three standard
VADs (QCELP, EVRC and G.729B) in a telecommunications en-
vironment. That result is reinforced in a comparison by Stader-
mann et al. [4], who find the spectral VAD to be superior to base-
lines based on frame energy and spectral entropy. The work has
also been extended by Cho et al. [5], who show that smoothing
can alleviate problems with errors in the end of speech region.

The spectral VAD of Sohn e al. is based on a simple Gaussian
assumption. This basic Gaussian model has two distinct problems:

1. The model has no knowledge of the spectral shape of either
the speech or the noise. It is well known, however, that
speech has distinct spectral peaks (formants). Conversely,
many types of noise have a smooth spectral shape.
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2. From a purely statistical point of view, the model assumes
that adjacent spectral bins are uncorrelated. This is not true,
especially for speech, and even more especially for observa-
tions from the overlapped triangular mel-spaced filterbank
typical of current ASR systems.

In this paper, we evaluate the basic Gaussian VAD algorithm
described above in an ASR context. We then argue that a differ-
ential spectral representation can minimize the effects of the two
problems described above. We derive a differential spectral ver-
sion of the Gaussian VAD, and show that it leads to improved per-
formance.

2. BACKGROUND THEORY

2.1. Decision theoretic framework

Define a boolean variable or hypothesis H, which can take val-
ues 0 and 1. H = O indicates non-speech and H = 1 indicates
the presence of speech. A VAD produces an estimate (or choice),
?:{, given some observation. For this derivation, assume that the
observation is the (complex) spectrum s.

The above leads to a simple decision theoretic formulation:

Define a loss or cost function, C <7‘£, 7‘1), that attaches a cost to

each combination of M and . Typically, the cost should be low
for a correct classification, and high for an incorrect one. The ex-
pected costs of the two possible classifications are then

ZCHO

ZCHI (H|s). ©)

E(C(H,0)|s) = (H|s), (1)

E(C(H,1)|s)=

We can now choose the classjﬁcation, 7:t, that has the smaller ex-
pected cost; that is: Choose H = 1 if

ZC H,1)P(H|s) <Zc (H,0)P(H|s). ()
Expanding the summations and rearranging,
P(’H:1|5)>C(0,1)70(0, ) @)
PMH=0|s) C(1,00-C(1,1)

Given that we will assume a model for the generation of s, it
is useful to apply Bayes’s theorem to the conditional probabilities
in equation 4. Notice that the evidence (denominator of Bayes’s
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theorem) term cancels, giving

[E[H=1) P(H=1 _COH-CO0
fls|H=0) P(H=0)" C(1,0)-C(L1)’
—— ——

Likelihood ratio, L (s) Prior ratio Cost ratio

where we refer to the terms as indicated.
The prior ratio and cost ratio can be set to unity given the fol-
lowing broad assumptions:

o The likelihood of an observation s being speech is as likely
as it being non-speech.

e The cost of an accurate classification is zero, and the costs
of the two inaccurate classifications are identical.

Of course, the above assumptions may not be true for a given sce-
nario, in which case the terms can be set accordingly. The com-
bination of cost ratio and prior ratio into a single threshold term
yields the likelihood ratio test used by Sohn ef al.. The advantage
of the decision theoretic approach is that it gives some insight into
what the threshold should be.

2.2. Gaussian model

Broadly following Sohn ef al. [3], but with a minor change of no-
tation to allow subscripts to refer to vector elements, assume that
both the speech and noise can be modeled by Gaussian distribu-
tions (more accurately, the real and imaginary components of each
spectral bin are i.i.d. Gaussian). This is identical to the assumption
made in the Ephraim Malah formulation for speech enhancement
[6]. We define two probability distributions:

S 2
11 L exp (—5—’“) , ©)
. ™

S 2
p— — J— Sk —
f(s|H= 171"[ AHM Xp( AHM)’ @)

f(s|H=0)=

where s is the S dimensional complex spectrum observation, s
is the magnitude of the k™" element of s, )y, is the variance of the
k'" dimension of the speech signal and y, is the variance of the
k*™® dimension of the noise signal. All of the above is for a single
frame, although the f subscript is omitted for clarity. Equation 7
follows from that fact that the sum of two Gaussian random vari-
ates is Gaussian with variance equal to the sum of the individual
variances.

Substituting equations 6 and 7 into equation 5 gives a VAD
likelihood ratio of

S 2
Lk Ak Sk
L — L .
(s) H Ak + ke oxp (Ak + pk ,uk) ®)

Notice that equation 8 is defined in terms of spectral power mea-
sures, eventhough the assumptions so far are based on complex
spectrum.

2.3. Correction for correlation

When taking a product of probabilities known to be correlated, it is
normal to make a simple correction for the correlation in the form
of a weighted geometric mean,

S
=TI f s1)7s ©

k=1
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where & is an optimised constant analogous to the language model
match factor in ASR. Sohn ef al. do this implicitly by taking the
unweighted geometric mean (x = 1), although in this framework
that is an extreme solution and represents absolute correlation be-
tween bins. k = 1/.5 represents complete independence.

3. DIFFERENTIAL SPECTRAL VAD

We suggest that the single zero high-pass filter (HPF),

sto=sip—si  1<k<S§, (10)
applied in the frequency dimension of each power spectral frame
will tackle the problems highlighted in section 1 as follows:

1. The HPF will map the smooth spectrum associated with
noise, especially the flat spectrum of white noise or impulse
noise, to a flatter spectrum centered around zero. This is
much closer to the spectrum of silence.

2. The subtraction will reduce or eliminate the correlation be-
tween adjacent spectral bins.

In fact, the decorrelation effect has been demonstrated in the con-
text of robust ASR by Nadeu et al. [7], who show that such a filter
can be used in place of the cosine transform normally used in ASR.

In the VAD context, however, we require a probability distri-
bution associated with the filter. This is derived as follows:

First, notice that the single zero filter of equation 10 corre-
sponds to a probabilistic change of variable with 1 < k& < .S and
an integral over s%. This integral turns out to be highly non-trivial.
Instead, we decimate the above substitution as follows, allowing
the problem to be solved as S/2 identical and much simpler inte-
grals:

Sil—SSk_SQk 1 1<k<S/2 (D

In this case, the length of the resulting feature vector is S/2 instead
of S — 1. For the rest of the derivation in this section, as the
integrals are identical, we simply consider the case where k = 1.

Second, given that the distribution of the complex spectrum is
Gaussian, it can be shown by change of variable that the distribu-
tion of spectral power is the exponential distribution,

2
f (82 | U) = lexp (—S—) , (12)
v v

where v is a variance parameter to be substituted later. It follows
that the joint distribution of two exponentially distributed observa-
tions is

2 2 1 5% s%
f (51,32 | vl,vg) = exp|————1]. (13)
V1V2 (%1 V2

The PDF of the filtered signal arises from changing one of the
variables to z = s2 — s7 and integrating out the other variable. To
perform the integral, notice that in the case where z > 0, s% >z
and s% > 0. Also, when z < 0, s% > —z and s% > 0. This
suggests the use of two different integrals:



In the case where z > 0,

/°° 5 1 < 2 z+ s%)
= ds? exp| —— — ——
0 V1U2 U1 V2
1
exp (,i) (14)
V1U2 V2
> 1 1
X ds? exp (—s% {— + —})
0 U1 V2
1 ( z ) V1U2
exp| —— ) ——.
V1U2 V2 U1 + U2

Similarly, in the case where z < 0,

Felonwn) = [Tasir () f (5 -2)
1

15)
z V1U2
= exp| — | - ——.
V1U2 (’U1 ) U1 + V2
Substituting back for z, and combining the two results,
F(s3—si|vr,v2) =
1 53 — 51 .
exp -2 1 if 3 > s2,
U1 + V2 V2 (16)
1 5% - S% e 2 2
exp | — if s5 < s7.
V1 + U2 U1

Note that both expressions are identical when s? = s3.

The likelihood ratio follows easily from equation 16 by sub-
stituting for v and ve. Assuming for simplicity that s3 > s, the
likelihood ratio is the ratio of the following two equations:

f(sg—sﬂ’H:l):

L ox (_M) a7
1+ A1+ pe + Az P pe+A2)’

and,

2 2 o - 1 83—5%
f(32731|7-[—0)—7exp - . (18)
p1 + p2 2

which evaluates to

p1 + 2
14 A1+ p2 + A2

2 2 2 2
X exp (_ So S + So 51) )
2 + A2 2
_ p1+ e
w1+ A+ p2 + A2

(s% -2 A2 )
X exp — .
2 H2 4 A2
The full likelihood ratio is the product of this expression applied
to each pair of spectral bins,

L(sg fs%) =

19

s/2

L(s) =[] L(s3% — s3-1) - (20)

k=1
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Fig. 1. Classification of VAD start and end times. The dark portion
represents speech, the box represents the VAD result.

4. EVALUATION

4.1. Testing data

The VADs were evaluated using an in-house database, some as-
pects of which were designed specifically for VAD evaluation.
The database consists of 14 speakers (7 male and 7 female) each
speaking 40 utterances in each of 6 different environments. This
is 3360 utterances in total. The utterances are isolated Japanese
city names, but are each 5 seconds in length. Typically, the first 2
seconds are background noise, the utterance itself is one second or
less, and the final 2 seconds are background noise. The data have
been manually marked up with the speech start and end times. The
data were recorded on a portable (PDA-like) device using an ear-
mounted microphone, the actual microphone being close to the
speaker’s cheek.

Five of the six environments were chosen to be representative
of those where the portable device might be used:

1. The laboratory sound-proof room.

. A large open-plan office with carpets and fans.

. A reverberant but open and quiet company lobby.

. A cafeteria at lunch-time with constant babble noise.

. A busy suburban street with occasional traffic.
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. A quieter, more open, outdoor area on a windy day.

The average signal to noise ratio for each environment is shown in
table 1.

4.2. Evaluation metric

The main evaluation metric consisted of a classification of each
utterance into one of the states indicated in figure 1. These are
based on a combination of the speech start and end times, and can
be thought of as a variation of the classes used by Rosca ez al. [8].
The four classifications drawn with dashed lines represent the VAD
working well, or in such a way that can be corrected using wide
margins. The bottom result in the right-most column represents a
correct non-detection of an empty utterance, one of which exists
(accidentally) in our database. The seven other classifications are
certainly errors, being either insertions, deletions or the offset time
not being detected in the recording.

The right-most column of figure 1 provides a useful metric
for optimizing ~: too small a value leads to large likelihoods and
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Table 1. Error rate (%) for four VAD configurations. Also shown
is the SNR for each environment, and the optimized value of « for
each VAD configuration.

Power Mel

SNR (dB) Gauss Diff. Gauss Diff.
1 (clean) 28.5 0.4 0.4 0.2 0.2
2 (office) 24.7 1.8 1.8 1.3 1.0
3 (lobby) 24.1 0.7 0.5 0.4 0.2
4 (cafe) 16.6 9.8 9.6 4.6 3.8
5 (street) 15.8 6.3 4.1 3.6 34
6 (outside) 21.4 6.3 52 8.9 5.5
K 2.5 3.0 1.0 1.0

missing end times. Too large a value, however, leads to deletions.
For ASR, we favour insertions over deletions as insertions can be
handled using garbage modeling. Missing end times, however, are
particularly bad as they cause the recogniser to “hang” and ulti-
mately give an errorful recognition.

4.3. VAD construction

The VAD is inserted into the spectral part of the normal signal pro-
cessing chain used in ASR. In this case, the signal is sampled at
11.025 KHz and pre-emphasized. Overlapping frames of 256 sam-
ples are then taken every 10 ms to form a 128 bin power spectrum
(the bin at 7 is discarded). The power spectrum is transformed into
32 mel spaced bins using half overlapping triangular filters.

The noise variance from the previous frame, p;_;, is used
in the likelihood calculation, and is then updated using a slightly
modified version of the estimator described by Sohn ez al. [2],

pu+L(s) .

1—pu
L) e @D

N 2
Fi=1rre™

where p,, = 0.95, and f1 = (fi1, fi2, . . ., fis)" . The speech vari-
ances, Ay, are estimated using power spectral subtraction as sug-
gested in [2], except with the usual over-subtraction and flooring.
The VAD was found not to be sensitive to the over-subtraction and
flooring values, but note that the flooring means that equation 8
does not reach it’s minimum value of 1. For this reason, the cost
ratio of equation 5 was set a little above 1 (actually 2.5).

The actual start and end points of the speech were determined
using a simple state machine that requires at least 10 frames indi-
cated to be speech in a 1 second window in order to transition to
the speech state, and 40 frames of contiguous non-speech to tran-
sition into the non-speech state.

4.4. Results

The original Gaussian based VAD, and the differential spectral
VAD were tested in both power spectral and mel spectral domains.
In each case, the parameter x was adjusted manually to minimize
the number of deletions and missing end times as described in sec-
tion 4.2. The results are shown in table 1.

The first 3 environments are relatively noise-free; there is no
significant difference resulting from the choice of VAD. There is,
however, a slight bias in favour of using the mel domain. The latter
3 environments are comparatively noisy, and show more variation.
In particular, the mel domain is more robust to the babble noise of

the cafeteria. The power spectral domain, however, is more suited
to the outdoor wind noise.

Broadly, the differential VAD produces fewer errors than the
equivalent non-differential formulation. This confirms the utility
of the differential spectral approach. We have also confirmed that
this improved VAD performance leads directly to improved speech
recognition performance on the same database.

Finally, one obvious difference between the Gaussian and dif-
ferential VADs is that the former uses a probability for each spec-
tral bin, whereas the latter uses a probability for each pair of bins.
In order to confirm that the advantage of the differential VAD is
not simply from using half the parameters, we constructed a com-
parable Gaussian VAD by averaging adjacent bins. This approach
only contributed detrimentally to the performance.

5. CONCLUSION

We have placed a spectral VAD into a rigorous decision theoretic
framework, and evaluated it in an ASR environment. In order to
optimize it to an ASR feature space, and make it robust to noises
with smooth spectra, we have re-formulated it as a differential
spectral VAD, again in a rigorous statistical manner. We have
shown the differential spectral formulation to be superior to the
basic Gaussian for an ASR application.
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