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ABSTRACT

We present an algorithm, based on the EM algorithm, which
simultaneously estimates both physical scale and vowel iden-
tities from a segment of speech. The validity of the algo-
rithm depends on the scale hypothesis that the variation
of the formant frequencies for a given vowel is mainly in-
fluenced by the physical size of the speaker. This is both
a new application and a new confirmation of a hypothesis
that is often accepted without proof.

1. INTRODUCTION

We present an algorithm, based on the EM algorithm, which
simultaneously estimates both physical scale and vowel iden-
tities from a segment of speech. The validity of the algo-
rithm depends on the scale hypothesis that the variation
of the formant frequencies for a given vowel is mainly in-
fluenced by the physical size of the speaker. This is both
a new application and a new confirmation of a hypothesis
that is often accepted without proof.

The formant frequencies of a phoneme are determined
by the length of the speaker’s vocal tract during vocaliza-
tion [4], and the vocal tract length is correlated with the
size of the speaker. This connection has been established
for rhesus macaques [5] and for children [15], and it has
been shown that phonetically similar vowels spoken by dif-
ferent speakers satisfy a scale relationship related to the
MEL scale of hearing [16, 17]. However, size is not nec-
essarily the direct cause of formant frequency variation in
human speech, since the frequencies are varied intention-
ally in the production of phonemes. But the reason behind
the correlation of physical size and formant frequency is
immaterial. It need only be accepted that there is a real
mechanism connecting them.

It is our hope that this algroithm may provide some
advantage in speaker identification and speaker adaptation
in speech recognition. In addition, it provides information
about the speakers gender, independent of fundamental fre-
quency, F0.

2. DATA ANALYSIS

The scale hypothesis was developed and tested on Hillen-
brand’s phonetically marked and annotated western Michi-
gan vowel data [6]. These data consist of 12 vowels spoken
in the “hVd� context by 45 men and 48 women. The child
data were not used and to equalize the sample sizes, only
33 of the female speakers were used.

By assuming the identities and formant frequencies of
vowels, a statistical model of the data was tested based on
a single unknown scale parameter. The formant frequencies
and covariances observed in these data were then used to
define the parameters of the algorithm. The algorithm was
then applied to telephone quality voice recordings [14] to
estimate the physical scale of the speaker and the identities
of the spoken vowels.

The published time-markings of the phonemes were used
in the analysis. However, the vowel identities were not
used by the algorithm, although the inputs were limited
to phonemes that were tagged as being vowels. The sam-
pled speech corresponding to each phoneme was then an-
alyzed using a 12 point linear prediction model using the
correlation method [12]. The formant frequencies were then
estimated by root solving and taking the frequencies greater
than 200 Hz. The 12 coefficient correlation method was cho-
sen over all other methods because it was found to provide
the best correlation to the quality controlled formant fre-
quencies of Hillenbrand [6] (correlation of 0.9155 and 0.7947
for formants 1 and 2 respectively).

3. SCALE HYPOTHESIS

Analysis of variance confirms that gender can be inferred by
comparing the formant frequencies of a known vowel spoken
by an unknown speaker to averaged male and female for-
mant frequencies [18]. When the same analysis is applied to
the current data, one is led to the same conclusion (results
not shown). The average frequencies are shown in Table 1.

Men Women All
Vowel Fl F2 Fl F2 Fl F2

ae 595 1922 690 2320 642 2121
ah 759 1317 930 1523 845 1420
aw 657 1033 816 1190 737 1112
eh 586 1799 733 2063 659 1931
ei 478 2081 540 2521 509 2301
er 475 1370 528 1583 502 1476
ih 432 2024 488 2367 460 2196
iy 343 2316 441 2740 392 2528
oa 495 909 569 1035 532 972
oo 469 1129 524 1226 496 1178
uh 622 1194 771 1435 697 1314
uw 378 990 464 1101 421 1045

Table 1. Average Formant Frequencies, men, women and
men and women combined.
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Rather than making a comparison to gender normal fre-
quencies, formant frequencies were modelled as scaled ver-
sions of normal frequencies. This model is suggested by the
data shown in figure 1.

For each of the 12 vowels and for each formant frequency
the average value of the 33 men is plotted as the ordinate
and the average value for the 33 women is plotted as the
abscissa. The striking feature of this plot is that the data
obeys a linear relationship.

The linear relationship in the plot is the quantitative
consequence of the scale hypothesis. The hypothesis im-
plicitly assumes that, for each vowel, there is a set of nor-
mal formant frequencies, and the formant frequencies for a
specific speaker are all a fixed multiple of the normal fre-
quencies. For speaker s and phoneme v, let Fsv denote the
vector of expected formant frequencies. Then

Fsv = asF0v + εsv (1)

where as is the scale factor and εsv is a mean zero random
variable. For the sake of modelling, we assume that εsv
are independent identically distributed multivariate normal
random variables with mean 0 and a given covariance ma-
trix Σ. We will assume the covariance estimated from the
data set shown in Table 2.

Σ =

(
5.48 7.01
7.01 33.74

)
×103 Σ−1 =

(
24.84 −5.16
−5.16 4.04

)
×10−5

Table 2. Σ and Σ−1

The assumption of equality of variances is contrary to ev-
idence that the variance of formant frequencies is greater
for women than for men, and generally increases with fre-
quency.

As as and F0v are not well defined, the model is un-
changed if we multiply all as by a constant while multiply-
ing all F0v by its inverse. Therefore it can be assumed that
the mean of as for the combined population of male and
female speakers is 1. Then taking the mean over s we find

mean
s

Fsv = F0v,

and this is how we estimate F0v. The normal formant fre-
quencies, i.e. the average of the 90 speakers of the formant
frequencies for each of the 12 vowels, is shown in Table 1.

4. TEST OF SCALE HYPOTHESIS

The significance of the scale hypothesis defined by equation
(1) is found by testing the statistical hypothesis H0 : as = 1
against H1 : as �= 1. This test of hypothesis can be con-
verted to an equivalent test of hypothesis in which the sta-
tistical variations have multivariate standard distributions.
The maximum likelihood estimate of as based on (1) min-
imizes the Malanobis distance

∑
v dΣ(Fsv, asF0v), and it

is equivalent to a maximum likelihood estimate that mini-
mizes a Euclidean distance. Here dV denotes the metric

dV (y,x) = (y− x)′V −1(y− x).

Furthermore, the F statistic for testing H0 is the same
statistic as in the Euclidean version with Σ replacing I,
that is

F =
(SS0 − SS1)/1

SS1/23

SS0 =
12∑
v=1

dΣ(Fsv,F0v) SS1 =
12∑
v=1

dΣ(Fsv, �asF0v)

where �as is the MLE as,

�as =

∑12
v=1 F

′
svΣ

−1F0v∑12
v=1 F

′
0vΣ

−1F0v

. (3)

The 0.05-critical level for rejection of the null hypothesis
is F0.05,1,23 = 1.71945. The F statistic for 33 men and 29
women out of the total of 33 selected from the Western
Michigan database exceed this critical value, whereas un-
der the null hypothesis we would expect only 5% or 4.5
speakers. Clearly H0 is rejected in favor of the scale hy-
pothesis.

Assuming that the hypothesis is established, the distri-
bution of the MLE as are shown in Figure 2.

As one would expect, the scale values are significantly
higher for women (mean value 1.0856) than for men (mean
value 0.9144). The rank sum test for the two populations
of scale values gives the highly significant statistic of NA,
NA standard deviations (77.98) above the mean 1105.5.

5. GENDER PREDICTION

The fundamental frequency of a speaker provides the most
obvious and accurate clue to the gender of the speaker
(c.f.[13]). Yet within gender groups fundamental frequency
is not correlated with physical size [10, 8]. Other approaches
to gender identification also do not rely explicitly on a
model of the physical size of the speaker. In ref.[18, 3]
feature vectors are computed for an utterance (LPC, for
example) and these are associated with a nearest gender-
associated template vector. In ref. [1] vocal tract length is
used similarly as one feature in gender identification, but
since this is defined as an explicit function of formant fre-
quency, it cannot be said that the physical size is being
“modelled.�

From the above observations, scale value is clearly a
strong indicator of gender. As designed, a scale value greater
than 1 is indicative of a smaller than average speaker, and
hence associated more with female speakers. Scale val-
ues less than 1 are similarly associated with male speakers.
Since F0 is known to indicate gender, we might ask whether
this scale value is related to F0. The mean value of F0 (as
given by Hillenbrand [6] is plotted as the ordinate against
the computed scale for each of the 90 speakers. Since F0

and scale both correlate with gender, there is an overall cor-
relation (value o.89339). However, within gender, the cor-
relation is less (for men 0.14217 and for women 0.46589).
This suggests that within gender, and more so for men, the
scale estimate is independent of fundamental frequency.
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6. VOWEL AND SCALE ESTIMATION

If formant frequencies are given for some known vowels spo-
ken by an unknown speaker, then the MLE as can be ob-
tained from (3). But if formant frequencies are given for
some unknown vowels spoken by an unknown speaker, then
we can no longer estimate as directly. Instead, both vowels
and as must be estimated. In the intended application, this
problem is to be solved given only estimates of F1 and F2.

The method of estimating vowels and scale is an iter-
ative EM algorithm [11]. We assume that the first two
formant frequencies are given for some number of unknown
vowels spoken by the same unknown speaker. Begin the
algorithm by setting as = 1. Scale the normal frequen-
cies for each of the 12 vowels by as and for each unknown
vowel, choose the scaled vowel that is closest to it (in Maha-
lanobis distance). Then update as with the MLE as using
(3) assuming that the chosen vowels are correct. Continue
rescaling, classifying vowels, and updating the value of as

until as “converges.�
In practice we may not know that a particular sampled

phoneme is one of the known vowels. In this case the pro-
gram must also decide whether the observed formants are
consistent with the set of known vowels, and if not then
reject the phoneme as an ‘outlier.’ Outliers are determined
by the minimum distance to a known vowel. If the min-
imum distance is greater than a critical distance for that
vowel, then the sample is rejected and excluded from the
reestimation. This outlier rejection process is performed on
each iteration since the rejection at any one step is at best
an approximate rejection. A sample that is rejected early
in the calculation could theoretically be readmitted if it is
rescaled within a valid range.

A conservative outlier rejection was used in this study.
Based on the Western Michigan formant data, a Maha-
lanobis distance of 10 to the F1, F2 vowel centers covered
more than 95% of the data. Using this cutoff value resulted
in rejection of obvious outliers in the TIMIT database and
improved the scale and vowel estimates in cases where there
was an obvious non-vowel.

7. RESULTS

The EM algorithm described above, based solely on the
mean frequencies derived from Hillenbrand [6], was applied
to the vowels of the TIMIT and NTIMIT recordings in both
2 and 3 formant versions. The results were found to be
better for the TIMIT than the NTIMIT database, as would
be expected since the NTIMIT database is degraded by
telephone exchange filtering. The results were also better
when 2 formants were used instead of 3, and this may be the
natural consequence of the LPC algorithm used to estimate
the formant frequencies, which has an increased error of
identifying the formant number of the higher formants. We
report the NTIMIT results based on 2 formants.

The overall distribution of scale values derived from
6300 sentences is shown in figure 3 for men and for women.

Comparing with figure 1, we see that the tendency of
female speakers to have a higher scale is preserved, (mean
value for women l.0282 and for men 0.9785). The differ-
ences are not nearly as pronounced, but nevertheless they

are significant (rank sum test is 32.6 deviations). The dis-
tributions of scale within each of the 8 regions shows the
same tendency of higher female scale. The high degree of
overlap in the distributions indicate a degradation in the
ability of the algorithm to predict scale.

The NTIMIT database also provides the height of each
speaker. The overall correlation of scale ot height was found
to be −0.27547 which is negative as expected, and signif-
icant (p = Beta − distribution). But this is not the whole
story. Within each of the 8 regions, there is a diversity of
correlations of height to scale, as shown in table 3.

Region Men Women
1 −0.06137 −0.26168
2 −0.03872 0.0466
3 0.00027 −0.18447
4 −0.01479 −0.16981
5 −0.0009 −0.27784
6 0.01163 −0.31775
7 −0.02061 0.16202
8 −0.11579 −0.20999

Table 3. Correlation of Scale to Height by Region and Sex
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Generally the negative correlation is preserved, but in many
regions the correlation is not significant. For men, the cor-
relation is almost never significant, and it is generally less
negative than for women. Similar kinds of sex differences
were observed by Blandon [2] and it was suggested to be a
consequence of variant cultural norms.

There are 15 vowels identified and annotated in the
TIMIT database and 12 of these correspond to the vow-
els of the Western Michigan Vowel database. To compare
the entire confusion matrix of 15×12 statistically would be
complex and unintuitive. Instead a measure of the accuracy
of the vowel identification can be assessed by focusing on
the distinct vowels [i] (eve) and [I] (it). There were l2563
instances of these vowels observed in the TIMIT database.
These were classified based on minimum Mahalanobis dis-
tance. Before scaling, 5973 were identified as being one
of these two vowels, while after optimal scaling 6060 were
correctly identified. This corresponds to an error rate of
52.46% before and 51.76% after. It is not possible to assess
the statistical significance of this minor improvement with-
out a detailed model of the random error of classification.

8. CONCLUSIONS

We have proposed and tested a scale model, and found that
the data strongly support the model. The model implies an
algorithm for scale estimation which has been successfully
applied to real speech data.

The inverse of the scale is implicitly assumed to be a
measure proportional to a hypothetical natural vocal tract
length.

The correlation between inverse scale and height is ob-
served to be more significant in women than in men, just
as the correlation of scale to fundamental frequency is more
significant in women. This is also consistent with the pre-
vious finding that formant frequencies and height correlate
oppositely for women than for men [9, 10], which may be
explained by the hormonally induced divergence in the la-
ryngeal growth in males [7]. It has also been suggested that
social influences may exist that may encourage learned gen-
der differences in formant frequencies.

But, these results cannot be interpreted reliably because
of the regional variation that was found. The formant fre-
quencies used in this algorithm were taken from Hillenbrand
[6] which most likely consists of North Midland speakers.
Modeling dialect region as an unknown speaker parameter
is required, but was not incorporated into this algorithm
because of the increased complexity, primarily the training
complexity.
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