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ABSTRACT

A novel approach is developed for efficient and accurate tracking
of vocal tract resonances, which are natural frequencies of the res-
onator from larynx to lips, in fluent speech. The tracking algorithm
is based on a version of the structured speech model consisting
of continuous-valued hidden dynamics and a piecewise-linearized
prediction function from resonance frequencies and bandwidths
to LPC cepstra. We present details of the piecewise lineariza-
tion design process and an adaptive training technique for the pa-
rameters that characterize the prediction residuals. An iterative
tracking algorithm is described and evaluated that embeds both the
prediction-residual training and the piecewise linearization design
in an adaptive Kalman filtering framework. Experiments on track-
ing vocal tract resonances in Switchboard speech data demonstrate
high accuracy in the results, as well as the effectiveness of resid-
ual training embedded in the algorithm. Our approach differs from
traditional formant trackers in that it provides meaningful results
even during consonantal closures when the supra-laryngeal source
may cause no spectral prominences in speech acoustics.

1. INTRODUCTION

In recent years, there has been a growing interest in developing
accurate, efficient, and compact representations, as well as related
statistical models, of speech dynamics. Such representations in-
clude articulatory variables [8, 10], vocal tract shapes [4], formants
and vocal tract resonances [1, 5, 3, 9]. In this paper, we present a
novel technique of tracking vocal tract resonances (VTRs) as a
compact representation for time-varying characteristics of speech.
VTRs share some common, desirable temporal properties with ar-
ticulatory variables, such as smoothness and target-directedness,
and yet have a lower dimensionality and more intuitive acoustic
interpretation. VTRs are related to but are also different from for-
mants. Unlike formants, VTRs do not “disappear”, merge, or split
during any part of speech. Rather, they exist at real frequencies at
all times, even when the mouth is closed. Defined as the acoustic
resonances for the oral portion of the vocal tract when the excita-
tion is forced at the glottis, VTRs correspond to natural frequen-
cies of the physical system. Hence they cannot “disappear” even
if the acoustic signal does not directly reveal them. Importantly,
VTRs are a smooth function of the articulatory variables, whose
movement uniquely determines the time-varying vocal tract area
function shaping the dynamics of the acoustic resonances.
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While VTRs may not correspond to spectral prominences where
zeros in the vocal tract transfer function exist in fricatives, stops,
and nasals, they coincide with formants for non-nasalized vow-
els where no vocal tract side branches and no supra-glottal exci-
tation sources are involved in speech production. Almost all the
existing formant tracking techniques (e.g., [7, 6, 12, 11]) rely, di-
rectly or indirectly, on the spectral prominence information from
speech acoustics only. The new technique presented in this pa-
per exploits additional dynamic prior information, which we call
hidden dynamics, to speech acoustics. The prior captures general
time-varying properties of VIR trajectories during speech produc-
tion even if supra-glottal excitation may eliminate acoustic spectral
prominences (such as during fricatives and stops). The joint use of
the dynamic VTR prior and speech acoustics, as well as of the
explicit relationship between the two domains, establishes a type
of structured speech model that enables accurate tracking of VIR
trajectories at all times and for all manner and voicing classes of
speech.

In our earlier work [2], we developed a version of the struc-
tured speech model implemented by discretizing the hidden dy-
namic vectors of VTR. Approximations due to the discretization
and the large number of needed discretization levels in the imple-
mentation of [2] can be successfully overcome by using continuous-
valued hidden dynamics of VTR. In this paper, we will present this
new implementation, where a novel technique based on Kalman
filtering is developed to perform VTR tracking and to adaptively
train the residual parameters in the predictive mapping from the
VTR vectors to the acoustics represented by LPC cepstral vectors.

This paper is organized as follows. The general form of the
structured speech model and one of its specific forms for use in
VTR tracking are presented in Section 2. Detailed design of piece-
wise linearization of the nonlinear prediction component in the
model’s observation equation is given in Section 3. The piecewise
linearization enables the use of highly efficient adaptive Kalman-
filter based algorithms to track the state variables of VTR. We pro-
vide detailed steps of such an algorithm in Section 4. The algo-
rithm is iterative, and it embeds adaptive training of the parame-
ters (means and variances) characterizing the prediction residuals.
Experimental results on VTR tracking validating the algorithm are
presented in Section 5.

2. STRUCTURED SPEECH MODEL WITH
CONTINUOUS HIDDEN DYNAMICS

The most general form of the structured speech model is a time-

varying nonlinear dynamic system, with carefully designed pre-
diction functions in both the state equation (1) and observation
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equation (2) below:

z(k+1) 8y [®(k), weqry] + w(k) €8]
o(k) = heplz(k)]+v(k), 2)

where s(k) is the speech unit at time frame k, the prediction func-
tions g[.] and h[.] are time varying according to the changes in the
unit s(k). (k) € R" is the hidden state vector representing inter-
nal speech dynamics at time k. o(k) € R™ is the corresponding
acoustic observation vector. us € R" is called the targer vec-
tor, representing the phonetic correlate of the speech unit (denoted
by s, being phones or phonological features). w(k) and v (k) are
uncorrelated Gaussian noises with covariances E[w (k)w(l) ™)
Q0 and E[v(k)v(l)™] = Réy, respectively.

Two key design issues for adopting the above generic structure
as a speech model are: 1) to parameterize the time-varying func-
tion gJ.] so that the temporal evolution of the hidden state vector
x (k) reflect realistic aspects of speech articulation; and 2) to de-
sign h[.] so that it properly characterizes the “forward” predictive
mapping relation from the hidden vector (k) to the observation
vector o(k). A specific design of the model for the VTR tracking
application is presented now.

First, the prediction function in Eq. 1 is parameterized by the
phone-dependent (s(k)) “target” vector a(;) and “system” matrix
@, (1), resulting in the following first-order, target-directed linear
state equation

z(k+1)=

B,y (k) + [ — Ry ]usry + ws(k).  (3)

The target-directed property: x(k) — w as k — oo can be
readily verified from Eq. 3, so are the smoothness and other de-
sirable properties. The hidden dynamic vector is taken to be the
VTR, consisting of frequencies and bandwidths corresponding to
the lowest P poles (dimensionality n = 2P):

m:(f’ b),:(f17f27""fP’b17""

In one specific implementation, we further simplified Eq.3 into

b3, bp)'. 4)

z(k+1) = ®x(k) + [I — ®lu+ w(k) (5)
by removing parameter dependencies on the speech unit. This
eliminates the need for phonetic segmentation information for the
VTR tracking application, while reducing the phone-specific prior
information on VTR to the phone-independent prior distribution
for individual components of the VTR vector. For example, in the
implementation, we placed the values of the VTR target frequen-
cies at w1.4 = (500 Hz, 1500 Hz, 2500 Hz, 3500 Hz)'. While no
phone-specific targets are provided, this gives the useful constraint
in VTR tracking that the mean values of the VTR target frequen-
cies are around the above nominal values. The common continuity
constraint x(k + 1) = x(k) + w(k) in formant tracking (e.g.,
[1]) was a special case of (5) and did not provide the prior nominal
values for the formant frequencies.

Second, when LPC cepstra are selected as the acoustic obser-
vation vector o(k), the prediction function in Eq. 2 can be made
phone independent and be determined precisely by an analytical
nonlinear function. As derived in detail in [2], the 7t" component
of the vector-valued prediction function from the VTR vector to
LPC cepstra is:

P
2 _ b
Z;e s cos 2#1;—) i=1,..,m (6)

p=1

where fs is the sampling frequency, ¢ is the order of the cepstrum
up to the highest order of m, and p is the pole order of the VTR up
to the highest order of P. To account for the predictive modeling
error due to zeros and additional poles beyond P, we introduce
the residual vector g in addition to the use of the zero-mean noise
v(k) in Eq. 2. This gives rise to the following form of the nonlinear
observation equation:

o(k) = Clz(k)] + p + v(k). @)

In summary, Eqgs. 5 and 7 constitute a simplified version of
the structured speech model, based on which a novel VTR track-
ing algorithm is developed and evaluated. The algorithm does not
require phone segmentation due to target parameter tying across
phones. Note that in contrast to the earlier approach in [2] where
the VTR vector x of Eq. 4 was discretized, @ in the current ap-
proach is continuous valued.

3. PIECEWISE LINEARIZATION OF THE PREDICTION
FUNCTION

The adaptive Kalman filter-based algorithm for VTR tracking us-
ing the model given by Egs. 5 and 7 without discretization requires
linearization of the nonlinear observation equation (7). One key
advantage of using the LPC cepstra as the acoustic measurement
is the straightforward design of high-accuracy piecewise linear ap-
proximation to the well-behaved nonlinear function Eq. 6.

In our specific implementation of piecewise linearization, we
divide each cycle in the sinusoid in each of the P = 4 terms of
Eq. 6 into ten non-uniform regions over the frequency axis. For
example, for the first-order cepstrum consisting of only half a cy-
cle of a sinusoid, five regions are pre-defined, and as many as 75
regions are used for the cepstrum of order m = 15. Using the cor-
responding cepstral values ¢, , ¢-4+1 (determined by Eq. 6 for each
separate cepstrum order up to 15 and pole order up to 4) for every
region boundary pair z,, 41, we fit the following linear curve (¢
vs. ) passing through the two points [(zr, ¢ ), (Zr+41, Cr+1)]:

C—Cr _ Cr41 —Cp

r—Zyr Tr41 — T

From this, we obtain the slope a; and intercept 3; for the lin-
earized region j according to

Cr41 — Cp
o = ——; Br = ¢r — Qrxy.
Tr41 — Tp

Then, for each cepstral order ¢, we have the following linearization
for any VTR frequency value inside a region’s boundaries (assum-
ing fixed bandwidths for simplicity in description):

P P
o< Y [ar(i,p) fot5:(6,0)] = D r(i, p) fot1r (8), (8)

p=1

where -
Z) = Zﬂr(lyp)
p=1

In a matrix form, Eq. 8 becomes the following linear function (con-
ditioned on region r):

C'lf]=A, f+d,, ©)
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where

Oér(lal) 057‘(172) ar(lz?’) ar(1:4)
ar(Q, 1) Oér(252) Oér(273) ar(274)
A, = : : : : , (10)
ar(15,1)  r(15,2) ar(15,3) ar(15,4)
¥r (1)
n 7(2)
f = and d, = . . 11
f3 :
fa 7 (15)

Generalizing to the case with variable bandwidths, we have the
following piecewise linearized observation equation:

o(k) = A, - x(k) +d, + p + v(k), (12)

where the “slope” matrix A, and “intercept” vector d, have a
somewhat more complicated form than (10) and (11), but they
are fixed (i.e., not trained) from the above piecewise linearization
procedure based on the known analytical function of Eq. 6. All
errors, due to the piecewise linearization approximation or other-
wise, are absorbed to the trainable prediction residual parameter,
p, in Eq. 12. Note that the “region” index r (i.e., which “piece”
in piecewise linearization) in Eq. 12 is selected based on the ap-
proximate value of VTR . In our specific implementation, r is
determined from the prediction step of a “linearized” Kalman fil-
ter which we describe in the next section.

4. VIR TRACKING ALGORITHM EMBEDDING
PREDICTION-RESIDUAL TRAINING

Once the (piecewise) linearized structured speech model, now con-
sisting of Egs. 5 and 12, is established, highly efficient adaptive
Kalman filtering and smoothing algorithms can be applied directly
to track VTRs as the problem of state estimation. To improve the
model after a tracking sweep is complete, we use the new VTR
estimates to compute the cepstral prediction residuals and then to
train the mean and variance parameters for them. The improved
model is then used to further improve the VTR tracking. Detailed
steps of this adaptive algorithm are provided below:

e Step 1: Initialize the model parameters u, Q, ®, R, and in
particular p(k) = 0;

e Step 2: Kalman filtering (forward pass): For each frame
k=1:N

Run Kalman prediction to obtain &(k|k — 1);

Select region 7 based on &(k|k — 1);
Build A, and 7, in Eq. 12 based on 7.

Compute Kalman gain and correction to obtain &(k|k);

e Step 3: Kalman smoothing (backward pass): For each frame
k = N :1, compute &(k|N);

e Step 4: Train residual parameters:

— Compute predicted cepstra C[z] using Eq. 6 and & (k| V)

for all frames;
— Compute residuals: o(k) — C[z(k|N)];

— K-mean clustering of all residual frames for the utter-
ance into M classes;

Fig. 1. Tracking VTR frequency (fi to f4) trajectories for a typical
Switchboard utterance after training the prediction residuals.

— Compute the sample mean and variance for each clus-
ter and use them to update pu(k) and R(k);

e Step 5: Go to Step 1 using the updated parameters until
convergence or a fixed number of iterations is reached.

Note that in the above, an assumption was made that the pre-
diction residual follows a mixture-of-Gaussian distribution. The
time-varying nature of residual parameters, pu(k) and R(k), re-
sults from possible switching of the mixture component over frames.
If the number of clusters M is set to be one, then residual param-
eters, p and R, become time invariant. If Step 4 is skipped (Iter-
ation 0), then the algorithm assumes that the analytical nonlinear
function for predicting cepstra from VTRs is unbiased.

In our diagnostic experiments, we found that empirical initial-
ization of parameters of u, Q, and ® worked satisfactorily well,
and hence they were not subject to training in order to reduce com-
putation. However, initialization of R (based on the sample resid-
ual variance from another fast VTR tracker) and of p(k) = 0 did
not work well until after the training was carried out. Details of
the experiments are presented next.

5. EXPERIMENTS AND RESULTS

The algorithm presented in Section 4 has been applied to 249,226
utterances of the Switchboard speech data (training set for a speech
recognizer). We have eye-checked several dozens of random utter-
ances among them and found no gross VTR tracking errors. We
have also compared our results with the formant tracks from a stan-
dard technique in WaveSurfer, and found qualitative improvement
mostly in unvoiced sounds and closures. Fig. 1 shows a typical
example of the estimated VTR frequency tracks (bandwidths not
shown to avoid clutter) with the use of M = 10 Gaussian mix-
ture components and of two iterations of the algorithm described
in Section 4. Note that the estimated f; usually stays at the nor-
mal, low frequency range of the resonance, even if the acoustic
spectrum alone does not show prominences.

To examine how accurately the tracked VTRs can provide a
compact presentation for speech dynamics, we used the VTR re-
sults in Fig. 1 to predict the acoustic spectral trajectory. The pre-
diction was carried out using Eq. 12, but excluding the unpre-
dictable noise or error term v(k). The original speech spectrogram
(smoothed by cepstra) is shown in the top panel of Fig. 2, and the
predicted spectrogram is shown in the second panel. Excellent
match was obtained, and the residual spectrogram, corresponding
to the unpredictable noise of v(k), is shown in the third panel of
Fig. 2. The magnitude of the prediction error is very low (note
the same scaling in plotting the above spectrograms), verifying the
strong predictability of the model for the speech data. In the final
panel of Fig. 2, we reduced the scaling in order to zoom into the
structure of the unpredictable noise. It is clear that not only the
unpredictable component of the model is small in magnitude, it
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Fig. 2. From top to bottom: Cepstral-smoothed spectrogram of
the original speech data; Predicted spectrogram from the model;
Spectrograms of the unpredictable noise plotted with two different
scales. Two training iterations were used.

Fig. 3. Same as Fig. 2 but with no prediction-residual training.

also has a more random structure in time and in frequency com-
pared with the original speech signal. Both of these are desirable
properties of model prediction.

To examine the role of prediction-residual training, we show
in Fig. 3 the same plots as in Fig. 2 except Steps 4 and 5 in the al-
gorithm of Section 4 were eliminated in producing the VTR tracks
and in the subsequent prediction of speech acoustics. Deviation
of the prediction from the original (comparing the two upper pan-
els) is much larger than that in Fig. 2, resulting in greater and less
random prediction errors shown at the bottom two panels of Fig. 3.

To further quantify the effects of prediction-residual training,
we computed the prediction error as the sum of squared differences
between the original and predicted cepstra over time and cepstral
order. The errors as a function of the number of algorithm itera-
tions, with the fixed three Gaussian component for the prediction
residual (M = 3), are shown in Table 1, where zero-iteration de-
notes no training of the prediction residual. Dramatic error reduc-
tion is seen in the first iteration, and the algorithm quickly con-
verges upon three iterations.

The prediction errors as a function of the number of Gaussian
components for the prediction residual, after applying two itera-
tions of the algorithm, are shown in Table 2. Gradual reduction of
the prediction error is observed as more components are used.

6. SUMMARY AND CONCLUSION

We presented a highly efficient and accurate algorithm for tracking
VTRs in natural, fluent speech, which coincide with formants for
non-nasalized vowels and they may differ for other types of speech

[ Tterations [ 0 | 1 [ 2 | 3 [ 4 |
[ Pred. Error | 670.8 | 281.7 | 2644 | 2589 | 25838 |

Table 1. Cepstral prediction error versus algorithm iterations.

[Mix.Comps. M) | 1 [ 2 | 3 [ 10 | 20 |
[Pred. Error [ 3456 | 2197 | 2644 | 2218 | 1971 |

Table 2. Cepstral prediction error as a function of M.

sounds. The efficiency is due to the use of an adaptive Kalman
filter algorithm, enabled by linearizing the nonlinear component
of the speech model. The accuracy is due to the use of a hidden
dynamic structure of speech and a physically motivated nonlinear
predictive function for speech acoustics, both inherent in the model
design. Itis also due to the adaptive training for prediction-residual
parameters embedded in the tracking algorithm. In many aspects,
the new algorithm is superior to an earlier algorithm [2] based on
discrete rather than continuous valued hidden VTR dynamics. Be-
cause of the elimination of a large number of VTR discretization
levels, the new algorithm is more efficient in computation, and
it is also generally more accurate as observed in comparative ex-
periments. Our current research involves expanding the current
optimization over the VTR dimension alone to joint optimization
over both the VTR and speech-unit dimensions in a true spirit of
structured speech modeling for speech recognition applications.

7. REFERENCES

[1] I. Bazzi, A. Acero, and L. Deng. “An expectation-maximization ap-
proach for formant tracking using a parameter-free non-linear predic-
tor,” Proc. ICASSP, 2003, pp. 464-467.

[2] L. Deng, 1. Bazzi, and A. Acero. “Tracking vocal tract resonances
using an analytical nonlinear predictor and a target-guided temporal
constraint,” Proc. Eurospeech, 2003, Vol.I, pp. 73-76.

[3] L. Deng and J. Ma, ‘Spontaneous speech recognition using a sta-
tistical coarticulatory model for vocal-tract-resonance dynamics,” J.
Acoust. Soc. Am., Vol. 108, 2000, pp. 3036-48.

[4] S. Dusan and L. Deng. ‘Recovering vocal tract shapes from MFCC
parameters,” Proc. ICSLP, 1998, pp. 3087-90.

[5] Y. Gao, R. Bakis, J. Huang, and B. Zhang. ‘Multistage coarticulation
model combining articulatory, formant, and cepstral features”, Proc.
ICSLP, Vol. 1, 2000, pp. 25-28.

[6] G. Kopec. ‘Formant tracking using HMMs and vector quantization,”
IEEE Trans. ASSP, Vol. 34, 1986, pp. 709-729.

[7]1 S. McCandless. “An algorithm for automatic formant extraction using
linear prediction spectra,” I[EEE Trans. ASSP, Vol. 22, 1974, pp. 135-
141.

[8] K.Richmond, S. King, and P. Taylor. “Modelling uncertainty in recov-
ering articulation from acoustics,” Computer Speech and Language,
Vol.17, 2003, pp. 153-172.

[9] F. Seide, J. Zhou, and L. Deng. ‘Coarticulation modeling by embed-
ding a target-directed hidden trajectory model into HMM — MAP
decoding and evaluation,” Proc. ICASSP, 2003, pp. 748-751.

[10] J. Sun, L. Deng, and X. Jing. ‘Data-driven model construction for
continuous speech recognition using overlapping articulatory fea-
tures,” Proc. ICSLP, 2000, Vol.1, pp. 437-440.

[11] D. Talkin. ‘Speech formant trajectory estimation using dynamic pro-
gramming with modulated transition costs” JASA, S1, 1987, pp. S55.

[12] L. Welling and H. Ney. ‘Formant tracking for speech recognition,”
IEEE Trans. Speech & Audio Proc., Vol. 6, 1998, pp. 36-48.

I-560



