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ABSTRACT

The problem we address in this paper is, whether the
feature extraction module trained on large amounts of
task independent data, can improve the performance
of stochastic models? We show that when there is
only a small amount of task specific training data avail-
able, tandem features trained on task independent data
give considerable improvement over Perceptual Linear
Prediction (PLP) cepstral features in Hidden Markov
Model (HMM) based speech recognition systems.

1. INTRODUCTION

In the tandem feature extraction scheme an MLP
was successfully used as a feature extractor for small
vocabulary speech recognition tasks [1, 2] and with
limited success in large vocabulary tasks [3]. Here
the MLP was trained with softmax nonlinearity in
the final layer and one-from-N target coding scheme
to estimate posterior probabilities of target classes.
During forward pass the softmax activation function
is replaced with linear activation to obtain features
that are close to Normal distribution. The linear
outputs are further processed by Principal Component
Analysis (PCA) to decorrelate and to optionally
reduce the dimensionality, and are used as features in
a Hidden Markov Model (HMM) based recognizer.
Figure 1 shows a block diagram of the tandem feature
extraction scheme.

Since the MLP and HMM are trained separately,
they can be trained on different databases as well.
Current HMM based classifiers require large amounts
of task specific training data to achieve competitive

performance. The problem we address in this work is,
can the features be trained on a large amount of task
independent data to reduce the requirement of task
specific training data for the subsequent stochastic
model based classifier? By task independent database,
we mean a database that is not specific to any task
but contains all the variability that is encountered in
the test condition. Here the MLP learns to suppress
the variability in the data that is not helpful to classi-
fication of features and enhances the variability that
is helpful. Since the features are already trained, we
expect that the HMMs require smaller amounts of task
specific training data than when training them directly
on acoustic features, such as PLP cepstral coefficients.
This is particularly helpful in practical situations
where one has very limited task specific data. The
ultimate goal of this data-guided feature extraction
paradigm is to acquire permanent knowledge from a
large amount of task independent training data and use
the features in all kinds of speech recognition tasks. In
this paper we systematically study the performance of
HMM based speech recognizers as a function of the
amount of task specific training data.

The next section compares the performance of fea-
tures trained on task specific and task independent
data. Subsequent sections study performance of the
systems by varying the amount of task specific train-
ing data.

2. USING BOTH TASK INDEPENDENT AND
TASK SPECIFIC DATA

We use two databases in our experiments.
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Fig. 1. Block diagram of the tandem feature extraction scheme.

• The English part of the OGI-Multilingual Cor-
pus [4], known as OGI-Stories, as task indepen-
dent data. OGI-Stories database has 3 hours of
manually transcribed telephone quality sponta-
neous speech. It is transcribed into 41 context-
independent phonemes.

• OGI-Numbers as task specific data. OGI-
Numbers contains ten continuous digits in utter-
ances varying between one and seven digits, la-
beled by twenty-three phonemes. The database
is split into approximately 20000 digits for train-
ing and 12000 digits for testing.

8 PLP cepstral features, its first and second derivates
are calculated from the speech signal. The features
are then mean and variance normalized over an ut-
terance. The MLP uses 9 frames of normalized cep-
stral features (9x24=216) as input. It has 500 hidden
units and one node per phoneme. The MLP trained
on OGI-Stories (TandStor) has 41 output nodes and
the MLP trained on OGI-Numbers (TandDig) has 23
output nodes. To make the number of features compa-
rable to cepstral features, only the 24 dimensions cor-
responding to the largest 24 eigenvalues are retained
at the output of TandStor after PCA. We train Hidden
Markov Model (HMM) using HTK [5]. We use 3 state
context-dependent HMMs, each state modeled by mix-
ture of 8 Gaussians. HMMs are trained on both OGI-
Stories (HMMStor) and OGI-Numbers (HMMDig).
The Word Error Rates (WER) using various combina-
tions of training and testing using available databases
are tabulated in Table 1. From Table 1 the following
things can be observed.

• Tandem features perform better than PLP cep-
stral features irrespective of the type of training
data.

• Training HMMs on the task specific data is bet-
ter than training on task independent data.

System WER (%)
PLP − HMMStor 5.7
PLP − HMMDig 5.1

PLP − HMMStor+Dig 5.3
TandStor − HMMStor 5.2
TandStor − HMMDig 4.7
TandDig − HMMDig 4.4

TandStor+Dig − HMMStor+Dig 4.5

Table 1. Results using the entire task specific and task
independent data.

• The Tandem system trained on task independent
data (TandStor − HMMStor) performs better
than the PLP system trained on task indepen-
dent data (PLP − HMMStor) and comparable
to the PLP system trained on task specific data
(PLP − HMMDig).

• The best performance is obtained by training
both the MLP and HMM on task specific data
(TandDig − HMMDig).

3. LIMITED AMOUNT OF TASK SPECIFIC
TRAINING DATA

Since the MLP is trained on large amounts of task
independent data, we expect the knowledge acquired
by the MLP to be helpful in reducing the amount of
training data required by HMM without sacrificing the
performance. The tandem features are trained once on
the entire task independent data and only the HMMs
are trained on varying amounts of data. The dash-dot
(red) line and dash-dash (blue) line in Figure 2 show
the WER as a function of the amount of HMM
training data. It can be seen that the performance
of the HMM trained on cepstral features degrades
faster with reduction in training data. To confirm that
this is actually due to the training of features and
not due to discriminative features, we train the MLP
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and HMM on the same amount of task specific data.
The solid (green) line in Figure 2 shows the WER
when both the MLP and HMM are trained on same
amount of task specific data. From the figure it can be
observed that the performance of tandem and cepstral
features are comparable when the HMMs are trained
on the entire task specific data. Also, the difference
is greatest when there is less training data. The best
performance is obtained when the tandem features
are trained on task specific data. This explains why
the WER for TandDig − HMMDig is lower than
TandStor − HMMDig. When the training data for
MLP is reduced severely, it starts over-fitting the
data and performance on test data suffers. This is
evident by the cross-over of TandDig − HMMDig

performance around 60% training data.
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Fig. 2. Word Error Rates (WER) for continuous digits
recognition task as a function of the amount of training
data.

To verify whether this observation holds for an-
other task, we use the Speech In Noisy Environments
(SPINE) database [6]. It involves a medium-sized
vocabulary of about 5000 words. The data consists
of conversations between two communicators work-
ing on a collaborative, Battleship-like task in which
they seek and shoot at targets. Each person is seated
in a sound chamber in which a previously recorded
military background noise environment is accurately
reproduced. The speech is sampled at 16KHz. PLP
cepstral features are extracted from a frame of 25 ms
of speech, every 10ms. The feature vector consists of

13 PLP coefficients augmented by deltas and double-
deltas. They are then normalized over the utterance to
zero mean and unit variance. The input to each MLP is
a window of 9 successive feature vectors. The training
set is divided into two parts, one is used to train MLP
and the other to train HMM to simulate the task spe-
cific and task independent data. Figure 3 shows the re-
sults on SPINE data. The trend is similar to the small-
vocabulary test data, except that the WER is higher due
to the higher complexity of the task.
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Fig. 3. Word Error Rates (WER) for large vocabulary
recognition task as a function of the amount of training
data.

To study the situation when the availability of task
specific data is very limited, as in many practical sit-
uations, we use only 20% of the task specific data.
From Figure 2 it can be seen that the difference in
performance between cepstral features and tandem is
the largest when the HMMs are trained with the least
amount of data.

3.1. Using task independent data together with a
small amount of task specific data

We train both HMM and MLP using the entire task in-
dependent data and 20% of the task specific data. Table
2 lists the WER for various combinations of training
data. The following observations can be made from
Table 2.

• Using small amounts of the task specific train-
ing data to train tandem features and HMM,
the WER is reduced by 39% relative to HMM
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System WER (%)
PLP − HMMDig20% 62.2
PLP − HMMStor 5.7

PLP − HMMStor+Dig20% 5.6
TandDig20% − HMMDig20% 38.1
TandStor − HMMDig20% 23.6
TandStor − HMMStor 5.2

TandStor+Dig20% − HMMStor+Dig20% 5.0

Table 2. Results using task independent data and small
amount of task specific data.

trained on cepstral features with the same
amount of training data.

• Using the MLP trained on task independent data
to extract features, and training the HMM on
small amounts of task specific data, we obtain
relative WER reduction of 62% compared to the
cepstral system.

• By training the MLP and HMM on the combina-
tion of task independent data and a small amount
of task specific data, the WER is reduced by
11%.

4. CONCLUSION

In this paper we addressed the problem of how features
trained on large amounts of task independent training
data reduces the requirement of task specific training
data for the HMM. With small amounts of task spe-
cific training data, the tandem system outperforms the
cepstral system. This may be due to the knowledge ac-
quired by the tandem features from the task indepen-
dent data. We showed that the performance of tandem
features is superior to cepstral features even when all
the available training data is used to train HMM.
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