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ABSTRACT

In this paper a novel speech signal representation method is
presented. The proposed method is based on the Fractional
Fourier transform (FrFT), which is a generalization of the clas-
sical Fourier transform (FT). Even though we use FrFT in fea-
ture extraction for speech recognition, it can very well be used
in other areas such as enhancement, verification, and synthe-
sis, where parametric representation of speech is needed. Ex-
perimental results conducted on the Aurora 2 database show
significant improvements over MFCCs at high SNR conditions.

1. INTRODUCTION

There has been a significant amount of effort devoted to im-
proving speech feature extraction. Even though a considerable
number of alternative processing schemes have been proposed,
Mel-frequency cepstral coefficients (MFCC) have remained as
the most widely used feature extraction method [3]. MFCCs are
computed in several steps. First, a Discrete Fourier Transform
(DFT) of a frame of speech is computed to obtain the magni-
tude spectrum. Next, the magnitude spectrum is frequency—
warped in order to transform the spectrum into Mel frequency
where the filterbank is uniformly spaced. Then, filters are mul-
tiplied with the power spectra of the frame to compute the en-
ergy in each filter of the filterbank followed by the logarithmic
compression. Finally, the discrete cosine transform (DCT) of
the filterbank log energies are computed resulting into MFCCs.
Linear Cepstral (LC) features are also obtained from the power
spectrum by applying log—compression and DCT without Mel-
warping and filterbank energy computation.

Speech is modeled not only across frequency but also across
time. Modeling across frequency reflects properties of human
auditory system as in the case of MFCC. Temporal proper-
ties are modeled by dynamic features or temporal filtering.
Nevertheless, intonation and coarticulation introduce combined
spectro—temporal fluctuations to speech even for the typical
frame sizes used in the frontend analysis. For example, for-
mant transitions exhibit diagonal trajectories.

The goal of this study is to introduce a new speech signal analy-
sis tool called fractional Fourier transform (FrEFT), which covers
classical Fourier transform as a special case. To the best of our
knowledge, the FrFT has not been applied to speech processing,
recognition and enhancement before. While we use it to extract
features for speech recognition, the use of FrFT should be of
general applicability to a variety of problems within speech and
audio processing. Moreover, digital implementation of FrFT is
as efficient as that of the classical FT in the sense that it can
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also be computed in the order of Nlog N time, where N is
signal sample length.

The FrFT has found many applications in the solutions of dif-
ferential equations, quantum optics, optical and sonar signal
processing [8, 4, 2, 9]. Its relationship to wide range of concepts
has been established and it has been employed in conjunction
with a variety of techniques [2, 4].

The Fourier analysis is one of the major tools used in signal
processing, and in many other disciplines. Although Fourier
transform is well suited for analysis and processing of time-
invariant signals and systems, it can not achieve comparable
results when the signal and/or system are time-varying. The
classical Fourier analysis results in the frequency components
of a signal. The fractional Fourier transform (FrFT) can reveal
the mixed time and frequency components of signals [1]. For
time-varying signals, filtering or processing in fractional Fourier
domains might allow us to estimate the signal with smaller
minimum square error (MSE) for certain classes of signals.

The rest of the paper is organized as follows. In Section 2, we
explain the concept of fractional Fourier transform along with
some important properties. The basics of discrete fractional
Fourier transform is described in Section 3. Section 4 presents
the experimental results and discussion. Finally, Section 5 sum-
marizes the findings and possible future research directions.

2. THE CONCEPT AND DEFINITION OF THE
FRACTIONAL FOURIER TRANSFORMATION

Time and frequency domains can be visualized as shown in
Fig. 1, where the two domains are orthogonal. Each applica-
tion of the Fourier transform rotates the representation of time
domain signal z(¢) by 7/2 in the counterclockwise direction.

Flle(t)] = X(w), Flz@®)]=2(-t), Flz®]=2t) (1)

where F' denotes the FT operator and X (w) is the FT of z(t).
Hence, repeated applications of F corresponds to successive
rotations of w/2. In this context, one could ask what linear
operator corresponds to a rotation of ¢ that is not a multiple
of w/2 as shown in Fig. 1. For the moment, let us assume
that such an operator exists. This operator should possess the
following properties as well:

1. [F*]™' = F~* = [F]*, where (.)* denotes Hermitian con-
jugation.

2. F*FP = Fot? (Additivity of rotations), o and 8 denote
the rotation angles.
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Figure 1: The fractional Fourier domain.
3. F™/? = F (Consistency with the FT)
4. F° = I (Zero Rotation), I denotes the identity operator.
5. F?™ =T (2 7 rotation)
6

. Linearity

The existence of such an operator satisfying the properties men-
tioned above, is shown in [5, 1] and named as Fractional Fourier
Transformation. The transformation and the kernel of this
transformation is given below, respectively, for 0 < |a| < 2,

F[f(t)] = / " Bulta,t) f(0)dt @)

(o)

Bu(ta,t) = Agexpljn(ts cot ¢ — 2tatcscd +t° cot d)]  (3)

_ exp(—jmsgn(sin ¢)/4 + j$/2)
Ay = - (4)
| sin ¢|1/2
where ¢ = 4F and j is the imaginary unit. The definition can
be easily extended outside the interval, 0 < |a| < 2, by using
properties 2 and 5. One can analytically verify that Bq(ta,t)
has the following properties:

a—0 = Bg(te,t) > d(ta — t) (5)
a — %2 = Ba(te,t) > d(ta +1) (6)
a—1 = Bg(te,t) = exp(—j2ntyt) (7

The kernel has the following spectral expansion [8]:

[o%e}

Ba(ta,t) = ) du(ta)e™ F4(2) (8)

k=0

where 9 (t) is the kth Hermite—Gaussian function and ¢, is the
variable in the ath-order fractional Fourier domain. It is well
known that the eigenvalues of the Fourier transform (FT) are
A = e 73" and the corresponding eigenvectors are Hermite
functions, which are normalized Hermite polynomials weighted

2
by the factor e 'T. Note that e 5% is the ath power of the
eigenvalue A of the classical Fourier transform. Setting a =0
results in the identity transform and a = 1 to classical FT.
Because of the additional parameter a, whose optimal value
will in general be different from a = 1 for different conditions,

the FrFT is much more flexible and will in general offer better
performance except in the special case when the optimal value
coincidentally turns out to be equal to 1.

In addition to those properties listed above there are a num-
ber of additional properties of FrFT [1, 2, 5]. One interest-
ing property is about rotation which states that the Wigner—
Distribution (WD) of the ath order FrFT of a signal is the same
as the WD of the original signal rotated counter clock-wise
by an angle of an/2 radians in the time—frequency plane [8].
This property may allow time domain warping concept, which
is widely used in speech and speaker recognition, to be applied
in fractional domains. Potentially, different interference, noise
and other sources of variability may be beneficial to suppress in
different fractional domains. The conceptual plot in Fig. 1 that
is adopted from [4] shows the potential advantages of processing
in the fractional domains. In the figure, the signal and noise
representations overlap both in time and frequency domains.
However, they may potentially be separated or have a smaller
overlap in some fractional domains. Moreover, certain phonetic
classes may have better representations in different fractional
domains.

3. DISCRETE FRACTIONAL FOURIER
TRANSFORM

The classical discrete Fourier transform (DFT) of a signal f(n)
can be represented in matrix notation as:

£, = Ff (9)

where fis an IV x 1 column vector, F is the N x N DFT matrix
and f; is the DFT of f. Similarly, the ath order discrete FrFT
of f, denoted as f;, is defined as:

f, = F°f (10)

where F is the N x N discrete FrF'T matrix which corresponds
to ath power of the classical DFT matrix F. Note that there
are certain subtleties and ambiguities in the definition of the
power function [5].

The discrete FrFT is defined through a discrete analog of Eq. 8.
Following the notation in [5], assuming u[n] to be both the dis-
crete Hermite—Gaussians and the orthonormal eigenvector set
of the N x N F matrix and A\ to be the associated eigenvalues,
the discrete analog of Eq. 8 becomes:

N—

F'lm,n] = Y ue[m]\fux(n] (11)

k=0

-

This matrix is unitary since the eigenvalues, Ay, of F have unit
magnitude. Setting a = 1 reduces Eq. 11 to a spectral expan-
sion of the classical DFT. Similarly, the index additivity prop-
erty can be demonstrated by using the orthonormality of u[n].
As shown in [5] any definition that satisfies these three require-
ments, which are the first three properties given in Sec. 2, can
be expressed in a spectral expansion form. Note that any ar-
bitrary orthonormal eigenvector set of F satisfies these require-
ments. The fact that the eigenvector set of the DFT matrix is
not unique is an ambiguity that should be resolved with Eq. 11.
Note that F has only four distinct eigenvalues: {1,—1,7j, —j}.
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Figure 2: The magnitude of FrFT of rectangle function for various
orders (domains).

The eigenvalues are in general degenerate. Therefore the eigen-
vector set is not unique. The same problem for the continuous
case is resolved by choosing Hermite Gaussian functions as the
eigenfunctions of FT. Likewise, for the discrete case this am-
biguity is resolved by choosing a common set of orthonormal
eigenvectors for DFT and discrete Hermite—Gaussians.

The defining equation for the continuous Hermite—Gaussian
functions is given below:

d*f(t)

yTER 4 f(t) = Mf(t)

(12)
Likewise, the discrete Hermite—Gaussians are defined as the
solutions of the corresponding difference equation. We refer
the reader to [5] for the derivation of the following expression.

Sfln] = Afln]

where f[n] is the uniformly sampled values of f(¢) with a sam-
pling interval of 1/\/ﬁ Determining S is the main step in
generating the F® matrix. The remaining steps involve de-
composing S into even and odd components and finding the
eigenvalue and eigenvector set of each component. We refer the
reader to [5] for a detailed explanation of these steps. Once
F? is determined the features used for speech recognition are
computed using the following equation:

cali] = \/% 2_: {Prolileos (5 -09)}  ay

where ¢, and Py« denote the cepstrum coefficients and the
power spectrum of f in the ath fractional domain, respectively.
The parameter M stands for the power spectrum dimension.

(13)

The example given in Fig. 2 demonstrates the relationship be-
tween time domain, frequency domain and some of the contin-
uum of fractional domains in between. We evaluated the FrF'T
of the rectangle function for several orders. The first plot on
the first column of Fig. 2 is the time domain function (a = 0).
The second plot in the same column shows the magnitude of
the transform in the a = 0.25 domain. The second plot in the
second column is the regular DFT of the rectangular function
which is a sinc function (after shifting the first half of the sig-
nal). Note that the last plot in the second column (a = 1.25)

is the time-reversed copy of the first plot in the second column
(a = 0.75) as stated by the properties given in Sec. 2. It is
interesting to observe the evolution of the time domain signal
into its frequency domain representation.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments are conducted on the Aurora 2 database.
The database and the experimental configuration are described
in [10]. The data consists of English digits spoken in the pres-
ence of additive noise and linear channel distortion. The distor-
tions are artificially introduced to clean TI-digits data. There
are two training conditions: clean—data and multi-style train-
ing, which uses noisy speech collected in various environments.
The training data consists of 8440 utterances. The multi-style
acoustic model training data consists of the same utterances ar-
tificially mixed with four different noise types at several signal—-
to—noise ratios (SNR). Three test sets consist of noise types
similar to those seen in the training data (TSA), different from
those seen in the training data (TSB), and with an additional
convolutional channel distortion (TSC).

Speech is analyzed using 25 ms frames with a shift of 10 ms.
Each frame is represented by a feature vector of 24 dimensions.
MFCCs are computed from 24 Melfilterbanks. Each frame is
spliced with 4 proceeding and 4 succeeding frames (9 frames)
and projected down to 39 dimensions using linear discriminant
analysis (LDA). The range of this transformation is further di-
agonalized by using maximum likelihood linear transformation

(MLLT) [7].

The acoustic model is trained as described in [11]. The model
uses 22 phones, which are obtained from the words in the vocab-
ulary. The system uses cross—word context dependent modeling
with 198 leaves. The cross-word context dependency occurs
only on the left of a word. Each phone is modeled by a 3—state
left—to-right HMM topology. The output distributions for the
66 subphonetic units are modeled by a mixture of 3.2K Gaus-
sians with diagonal covariance. The models are trained on the
multi-style data. Given the small size of the vocabulary we
performed unpruned Viterbi Decoding on a precompiled static
HMM network obtained by expanding words into phones and
leaves. The network contains 196 emitting and 78 null states.

The test data contains seven SNR conditions: {-5dB, 0dB, 5dB,
10dB, 15dB , 20DB, Clean}. The commonly used performance
result includes the average word error rate (WER) for the con-
ditions between 0dB and 20dB, which is shown as [0-20dB] in
the third column of Table 1. Even though we chose Aurora 2
as the task for evaluations, we did not address issues related
to noise robustness. The focus here is to introduce FrF'T as an
alternative frontend for a well defined compact experimental
task. The FrFT, MFCC and LC are compared as frontends on
the Aurora 2 database. Table 1 presents WERs averaged across
different SNR conditions. In the table, [5dB—Clean] includes all
conditions between 5dB and Clean: {5dB, 10dB, 15dB, 20dB,
Clean}.

LDA objective function is used to determine the best fractional
domain. We observed that the objective function is maximized
in the neighborhood of a = 1.0. The fractional domain (order)

I-531



Performance Comparisons of the traditional and FrFT Based Features.(%)
FrontEnd Test | [0-20dB] | [6dB-Clean] | [10dB-Clean] | [15dB-Clean]

Linear Cepstra TSA 11.54 3.78 1.65 1.13
No Adaptation TSB 12.89 4.49 2.00 1.25
TSC 11.97 4.56 2.36 1.47
MFCC TSA 8.88 2.98 1.51 1.05
No Adaptation TSB 9.70 3.29 1.62 1.08
TSC 9.31 3.39 1.83 1.25
FrFT TSA 8.96 2.92 1.44 1.02
No Adaptation TSB 10.30 3.60 1.72 1.09
TSC 9.22 3.34 1.78 1.20
Linear Cepstra TSA 6.86 2.07 1.03 0.77
FMLLR Adaptation TSB 7.86 2.42 1.13 0.78
TSC 717 2.53 1.40 0.96
MFCC TSA 6.30 1.94 0.98 0.73
FMLLR Adaptation TSB 717 2.20 1.04 0.73
TSC 6.46 2.31 1.29 0.90
FrFT TSA 6.17 1.86 0.92 0.67
FMLLR Adaptation TSB 7.21 2.23 1.01 0.65
TSC 6.18 2.03 1.09 0.75

Table 1: Word Error Rates (WER) across different test conditions on the Aurora 2 database.

is determined empirically in the neighborhood of a = 1.0. We
found a = 1.025 (equivalently a = 0.975) to be the best value
for the minimum WER. Note that a = 0.975 results in the
same transform coefficients but reversed in time. In Fig. 2, the
transform outputs for the cases of a = 0.75 and a = 1.25 are
identical, except for the time reversal of the axis.

In Table 1, we see that without adaptation MFCC features
present the lowest WER, for TSA and TSB across all SNR con-
ditions. This is to be expected as MFCC includes a form of
smoothing when filterbank energies are computed as opposed to
using raw transform coefficients as in the cases of LC and FrFT.
Nevertheless, FrF'T performed slightly better than MFCC at
high SNR conditions on TSC. We also performed feature space
maximum likelihood linear regression (FMLLR) adaptation.
The goal of this transform is to affinely transform the adap-
tation data so as to maximize their likelihood [6]. Performing
FMLLR adaptation results in more improvement for LC and
FrFT than MFCC. However, the improvement from adaptation
is not enough for LC to match the performance of MFCC. On
the other hand, FrFT matches the performance of MFCC for
TSB and outperforms it for TSA and TSC. We observe that the
FrFT based features obtained larger improvements as average
SNR level is increasing.

We also notice the largest relative decrease in WER for TSC,
which may suggest that FrF'T is more robust to linear chan-
nel distortion than MFCC. The relative improvements in WER,
on TSC across different SNR conditions listed in the table are
4.3%, 12.1%, 15.5%, and 16.6%, respectively. The correspond-
ing figures for TSA are moderate 2.1%, 4.1%, 6.1% and 11.9%.
FrFT outperformed LC by about relative 10%, 9% and 19% on
average for TSA, TSB and TSA, respectively across all SNR
conditions.

5. CONCLUSIONS AND FUTURE WORK

We introduced a new speech analysis method for speech pro-
cessing in general and speech recognition in particular. The
proposed method is called fractional Fourier transform (FrFT),
which generalizes classical Fourier transform. Even though we
applied FrFT to extract features for speech recognition, we be-
lieve it will find other applications in such areas as enhance-
ment, synthesis and others. The experiments conducted on the
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Aurora 2 database showed significant improvement compared to
such traditional frontends as MFCC and linear cepstra in high
SNR. conditions. Our future research direction will focus on
compensating different sources of speech variability in different
fractional domains and joint modeling of speech in multitude

of fractional domains.
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