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ABSTRACT

We propose a multi-pass linear fold algorithm for sentence 
boundary detection in spontaneous speech. It uses only prosodic 
cues and does not rely on segmentation information from a 
speech recognition decoder. We focus on features based on pitch 
breaks and pitch durations, study their local and global structural 
properties and find their relationship with sentence boundaries. 
In the first step, the algorithm, which requires no training, 
automatically finds a set of candidate pitch breaks by simple 
curve fitting. In the next step, by exploiting statistical properties 
of sentence boundaries and disfluency, the algorithm finds the 
sentence boundaries within these candidate pitch breaks. With 
this simple method without any explicit segmentation 
information from an ASR, a 25% error rate was achieved on a 
randomly selected portion of the switchboard corpus.  The result 
from this method is comparable with those that include word 
segmentation information and can be used in conjunction to 
improve the overall performance and confidence.

1. INTRODUCTION 

A crucial requirement for robust information extraction from 
speech is automatic determination of sentence boundary [1].
Simple methods relying on signal energy features, such as those 
used in speech end point detection, are not adequate to address 
this problem.  Recently,  significant efforts have been directed 
toward utilizing higher level linguistic information in the speech 
such as in creating an hidden event statistical language model 
wherein sentence boundaries and disfluencies are modeled as 
hidden events[2][3]. Many of these techniques rely on information 
such as phone/word segmentation made available by an 
automatic speech recognizer (ASR).  While these approaches 
have signaled progress, they often suffer from potential 
difficulties related to dealing with (ASR) errors and the inherent 
ineffectiveness in modeling hidden events with just segmental 
information. To address this issue, a promising and frequently 
sought after solution is to utilize one of the key pieces of 
information ignored during ASR, viz., prosody related cues.  

1.1. Prosody cues

In recent years, there has been increasing attention paid to 
the use of prosody in automatic speech recognition and 
understanding. Prosodic cues are known to be relevant in 
characterizing discourse structure across languages and therefore 

are expected to play an important role in various information 
extraction tasks. For example, a long pause in conjunction with a 
preceding phrase-final low boundary tone, and a subsequent 
pitch range reset might imply a sentence boundary.   

A companion problem with sentence boundary detection is 
disfluency detection [6]. Disfluencies (e.g., fillers such as “um”, 
repeats, self-repairs) are prevalent in spontaneous speech. In 
studies of spontaneous speech, it has been found that the 
probability of disfluency is exponentially proportional to the 
sentence length [4].  In the context of sentence boundary 
detection that deals with lengthy speech utterances, disfluency is 
almost unavoidable. These two problems together with end of 
utterance detection (EOU) are being studied increasingly 
through the use of prosodic features. 

A popular method is to use statistical learning such as CART 
style decision trees, as for example, the study by Shriberg et 
al[1]. More recent results by these researchers indicate a 22.9% 
sentence boundary detection error rate on the switchboard 
corpus [5]. In their approach, a variety of spectral and temporal 
features are first extracted in a local region around a word 
boundary obtained from an ASR (200 ms across both directions 
from the trailing and leading edges of the words defining the 
boundary). A CART style decision tree is then trained using 
these features.  

In this method, since the training data employed come from 
a large number of speakers, the parameters of the tree provide an 
“averaged” representation of various speakers’ speaking styles. 
As such, the decision trees could not reflect the specific 
speaking styles of an individual speaker. Also, features extracted 
within a local window do not reflect the global (utterance level) 
speaking styles: Features such as speaking rhythm, global pause 
distribution are, however, important. A final limitation arises 
from the ASR word alignment error, which is almost 
unavoidable with current ASR techniques. Incorrect word 
boundary hypotheses often lead to higher error rates in decision 
tree methods [5].

This paper attempts to address some of the challenges and 
limitations listed above, in proposing an algorithm that is 
speaker dependent, ASR independent and that uses some global 
features for sentence boundary detection. 

1.2. Pause features 

Pause features were found to play a critical role in boundary 
and disfluency detection problems. In measurements of decision-
tree feature usage, the pause-related features were found to be 
queried the most. [1] A summary of results related to the pause 
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behavior in spontaneous speech from a study on spontaneous 
speech by Nakatani and Hirschberg is provided in Table 1 [8]:

Pause Juncture Mean Std Dev N
Fluent Pause 513ms 676ms 1186
Disfluency Pauses 334ms 421ms 346
     . Fragment 289ms 377ms 264
     . Non-Fragment 481ms 517ms 82

Table1: Characteristics of pause durations in spontaneous speech (from
[8])

From this table, we could observe that fluent pause is 
statistically longer than the disfluent pause. Non-fragment 
disfluency pause is similar in its length to fluent pause but its
frequency of occurrence in the corpus was rare. We could also
see the deviations in these statistics are also large. This is 
attributed to differences in individual speaking styles (i.e.,
individual differences in pause allocation) and or differences in
speaking rates. Our algorithm is specifically useful in dealing
with the second situation.

Based on these data, people have tried to employ alternate 
values for static threshold, such as 400ms, to classify disfluent 
and fluent pause, but these results were found to be in general 
“unreliable” [8]. In this paper, instead of setting such static 
thresholds to detect boundaries, we attempt to model the
behavior of the internal breaks and use it to “predict” the correct 
classification boundary on a per speaker basis.

Another contribution of this work is in the pause
representation. In Shriberg’s study[1], pause durations are 
retrieved by automatic speech recognition. In this paper,
smoothed pitch duration and break statistics are utilized to
obtain sentence boundaries without needing ASR segmentation 
information. These features are found to be faster to retrieve and 
enable real time processing possible. Also the inherent word 
boundary alignment error in ASR is avoided.

The major questions that are addressed next are: 
1. How to derive a threshold to robustly narrow down the 

range of pitch breaks from which we can find the sentence
boundaries?

2. How to deal with breaks that are brought about by some 
type of disfluency instead of a true sentence boundary?

1.3. Disfluency and their phonetic consequences

In Shriberg’s phonetic study of disfluency [7], disfluency is
divided into 3 phases: reparandum, editing phase and repair. 
Among these, reparandum and editing phase may have the most
significant influence on pitch break duration distributions. There 
are many special phonetic features characterizing these two 
phases, including lengthened pause, lengthened reparandum 
syllable, intonation repetition, word cutoffs and laryngealization.
Some of these features may help us to do post processing in
distinguishing sentence boundaries from disfluencies. Some of 
these features, such as lengthened pause deemed to influence 
pitch breaks’ distribution are considered in this study. It should 
be noted that some of the other properties such as
laryngealization are difficult to measure without additional
information and are hence not included in this study.

2. MULTI-PASS LINEAR FOLD ALGORITHM 

2.1. Pitch break behavior

Figure 1 shows the pitch (F0) contour for an example speech
signal (Switchboard corpus). We can see that the sentence 
boundary (<bd>) shows a larger break duration, and the pauses 
around the filled pause “Uh” are large as well. These are quite 
apparent relative to the other breaks seen in the speech stream.

Figure 1: F0 (pitch) contour showing pauses for sentence boundaries and 
fillers in an example utterance from the Switchboard corpus. 

Indeed, in normal spontaneous speech, such phenomena are
statistically dominant in the sense that people tend to pause in 
sentence boundaries and disfluencies [8].  Other types of breaks 
that occur in speech include intra- and inter-word breaks and
breaks corresponding to other manifestations of disfluency (such 
as repeat, repair and delete). In general, the values corresponding 
to these breaks tend to be smaller than that for a sentence
boundary or filler [8].

2.2. The sorted pitch break map

In this algorithm, we mainly focus on pitch breaks, pitch 
properties in the break neighborhoods and global statistics such 
as distribution of the pauses. The procedure used to obtain the 
pitch values was similar to that in [1]. (ESPS [10] and post 
processing using Speech Filing System [9])
The key step in this algorithm is to perform the ascending sort
operation with respect to the pitch break durations (calculated
for each dialog turn). In Figure 2, each point in the figure 
represents a pitch break. The order of these breaks is no longer 
the same as the order in which they occur in the utterance, but
sorted by the length of their duration.

Figure 2: Sorted pitch break map for one dialog turn. Note that a turn
may contain  more than one sentence boundary.

Analysis of several such sorted pitch break maps led to the
following observations: 
1. The map tends to be roughly “decoupled” into 2 regions.

The lower portion, corresponding to the shorter duration 
breaks, has most of the pitch break points occurring in a 
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spontaneous speech utterance. The upper region 
corresponding to larger duration breaks is more sparsely
populated. It was found that the lower region is related to 
most of the intra-word and inter-word breaks. The upper
portion is related to longer breaks corresponding to filled
pauses, disfluency, hesitation and other special breaks (with 
unexplained speaker behavior in some cases). 

2. When the incidence of disfluency increases, the second part
tends to have more points and the “transition area” between
the two parts tends to get increasingly populated.

2.3. Linear fold algorithm

Now the problem is to translate these observations into a model.
Classical statistical detection was not appealing primarily due to 
the aim for performing the detection in an “unsupervised” basis 
and on a per speaker basis of this non-linear behavior of pause 
distribution. From the first observation above, it appears that the 
pitch breaks could be decoupled into two parts. The idea hence 
is to use two lines to fit the pitch break map in the mean square 
sense. For any n pitch breaks, there are total (n-1) methods to cut
the points into 2 groups. The implementation is done so as to cut
the points in the sorted pitch break map into one of these two 
regions and doing a linear fit to each group independently. Then 
we choose the cut which has the minimal mean squared 
deviation. Applying such an operation to the pitch break map of 
Fig. 2 now yields the fitted map of Figure 3: 

Figure 3: Linear fold algorithm

As could be seen, this one pass linear algorithm could fit the 
data well most of the time. The lower line slope is decided by
the small breaks that safely encompass most of normal intra-
word and inter-word breaks. The upper line represents fluent
pause, disfluency, hesitation and other special breaks. The
breaks in the upper segment are the special focus of our study.
A test with a representative portion of the switchboard corpus 
(100 dialog turns) showed that 91% of these utterances can be
handled well with this simple linear fold algorithm. Yet there are 
cases where there is a rich transition area between these two 
linear lines and/or the upper segment encompasses too many
points that it is highly overlapped in the transition region. The
simplest method do deal with this would be to recursively
applying this algorithm. The only difference is removing the 
lower half segment of the model in each iteration.

Figure 4 shows the results of two successive such operations.
The left figure is the result of the first fit while the right figure is 
the result of the second fit. 

Figure 4:  Illustrating the two pass linear fold algorithm:  result of the 
first pass is to the left and the second pass to the right.

2.4. Post processing 

The upper segment resulting from a multi linear fold fit includes
not only fluent pause, but also disfluent pause. As mentioned 
earlier, in contrast to the work based on localized information [1],
we propose to utilize more global utterance information.
Figure 5 shows some candidate breaks in the upper-most
segment after the linear fold operation (in the time axis). Based
on published results and our own observations, we summarize
the following properties to help find the true sentence 
boundaries:

Figure 5: Pitch breaks in time axis 

Property 1: Disfluency is more likely to appear earlier in a
sentence. Shriberg’s study [4] in spontaneous corpus (e.g., 
SWBD/ATIS/AMEX) supports this fact. The first break point
from the left in Fig. 5 reflects this case. Since such a break
appears so early in a sentence, it could not be sentence
boundary, and we normally remove such breaks in our 
algorithm.
Property 2: Sentence boundaries should be distributed evenly
and could not appear too close to one another . The second and
third breaks in Fig. 5 represent such a case. Since it is almost
impossible to associate real linguistic events to such a pair of 
points, this implies the presence of at least one of them related to 
disfluency.
Property 3: Occurrence of pitch resets associated with sentence
boundaries. If we observe a pitch reset, which is a flag for a 
sentence boundary, we declare a boundary detection.
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Property 4: Break duration values. If no other cue is available,
when we wish to choose a sentence boundary marker from a pair
of candidates, we could simply pick the one with the longest 
duration.
The implementations of these decisions are illustrated in Fig. 6: 

Figure 6: Post processing

3. EXPERIMENTAL RESULTS 

Experiments were performed on the switchboard database. It
should be noted that the data considered for these experiments 
did not include utterances with any serious back channeling or 
other strong background noise and music, etc.  These 
phenomena severely degrade the boundary detection and
investigations of robust approaches against such effects are 
outside the scope of this work.
We randomly chose speech from 100 dialog turns and performed
the operation proposed in this paper. The overall error rate in
sentence boundary detection was 25%.

Number
Sentence boundaries 351
Missed boundaries 25
False alerts 63

Table 2: Results of sentence boundary detection.

Here we give an analysis of the errors:
False alerts were the major source of errors. This is similar to the 
findings of [8]. Phonetic similarities between disfluency and 
fluent pause were the major reason. Richness of such errors also
is related to the corpus we chose. In “clean” speech, such errors
are not expected to be so significant.
The existence of “missed boundary” error often related to the
variability in the user speaking state, especially while the user 

tends to speed up the speech, or when he tends to be emotional
(e.g., excited). These errors were however less dominant.

4. DISCUSSIONS AND FUTURE WORK 

The best results so far yield error rates of about 22.9%[5] using a 
range of features and a decision tree based analysis on data from
the same corpus. In contrast, the proposed method which does
not rely on any ASR-based information, and uses just prosodic 
cues, obtained reasonable good and comparable results. It is also 
very interesting to combine the result of this method with
statistical methods, either as a post processing, or even as an 
additional set of features to further boost the confidence of the
performance.
The post processing method we considered was a simple
decision tree. The difference here is these rules are “learned”
from human knowledge, but not directly by the machine.
Machine learning techniques can facilitate efficient real time
processing. Support vector machines, and fuzzy inference 
techniques appear to be good candidates for the boundary and 
disfluency detection problems; these are topics for future work. 
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