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ABSTRACT

Automatic prosody labeling is important for both speech syn-
thesis and automatic speech understanding. Humans use both syn-
tactic cues and acoustic cues to develop their prediction of prosody
for a given utterance. This process can be effectively modeled
by an ANN-based syntactic-prosodic model that predicts prosody
from syntax and a GMM-based acoustic-prosodic model that pre-
dicts prosody from acoustic-prosodic observations. Our experi-
ments on the Radio News Corpus show that ANN is effective in
learning the stochastic mapping from the syntactic representation
of word strings to prosody labels, with an accuracy of 82.7% for
pitch accent labeling and 90.5% for intonational phrase boundary
(IPB) labeling. When acoustic observations and reasonably ac-
curate phoneme transcriptions are given, a GMM-based acoustic-
prosodic model, coupled with the syntactial-prosodic model, can
achieve 84% pitch accent recognition accuracy and 93% IPB
recognition accuracy. These results are obtained using different
speakers for training and testing and have considerably exceeded
all previously reported results on the same corpus, especially for
the task of IPB detection.

1. INTRODUCTION

Prosody refers to the suprasegmental features of natural speech
(such as rhythm and intonation) that are used to convey linguistic
and paralinguistic information (such as emphasis, intention, atti-
tude and emotion). Automatic prosody labeling is important for
both speech synthesis and automatic speech understanding.

High quality text-to-speech synthesis systems require accurate
prosody labels to generate natural-sounding speech. In these sys-
tems, prosody is assigned based on information extracted from
text. Although it is generally believed that syntactic, semantic
and pragmatic factors are all involved in prosody decision, such
labeling relies primarily on syntactic analysis due to the diffi-
culty of representing and extracting high-level linguistic infor-
mation (the discourse, pragmatic, semantical information) from
text. Hirschberg [1] has proposed a decision-tree based system
that achieved 82.4% speaker dependent accent labeling accuracy
on Radio News, a large improvement over early systems that la-
bel prosody based on function word versus content word distinc-
tion. Hirschberg’s result is important because it shows that it is
possible to accurately predict prosody from syntax. In another
corpus-based study, Arnfield [2] claimed, after his bigram mod-
els predicted prosodic stress from parts-of-speech (POS) with 91%
accuracy, that although differing prosodies are possible for a fixed
syntax, the syntax of an utterance can be used to generate an un-

derlying ”baseline” prosody regardless of actual words, semantics
or context. Similar results were achieved by Ross [3], whose sys-
tem predicts ToBI [4] style prosody labels from text with 82.5%
word-level accent presence/absence accuracy. Ross’s decision-
tree based system is different from Hirschberg’s in that it assigns
prosody at syllable level instead of at word level and requires pre-
generated prosodic phrase structure as input. Even though the im-
portance of syntax in predicting prosody has been recognized in
designing these previous systems, the syntactic information con-
tained in the text are not fully utilized: these systems either used
small POS set (only 8 POS categories in [1] [3]) due to the limi-
tation in their decision-tree algorithm, or included only small POS
context (unigram in [1] [3] and bigram in [2]).

In automatic speech understanding, prosody has been widely
used to infer the status of the high-level linguistic units such
as syntax, disfluency, dialog act, semantics and emotion. Two
prosody recognition models are usually desired: 1. a syntactic-
prosodic model that recognizes prosody from the recognized word
strings, 2. an acoustic-prosodic model that recognizes prosody
from the acoustic signal. The syntactic-prosodic model is essen-
tially the same as what has been used in speech synthesis ex-
cept that the recognized text instead of the original text is used
as input. The acoustic-prosodic model models the PDFs of the
acoustic-prosodic observation over given words or phonemes and
can be used alone or coupled with the syntactic-prosodic model
to improve prosody recognition performance. An early example
for the acoustic-prosodic modeling was reported by Wightman et
al. [5]. In their system, a decision-tree and a Markov chain model
were used to compute the probability of syllable-level prosody
sequences given the syllable-timed acoustic features. Their sys-
tem does not have a syntactic-prosodic model and assumed that
prosody can be determined completely from the acoustic correlates
(the pitch, duration and energy, etc.) and lexical stress information.
This system has achieved success in labeling pitch accents on Ra-
dio News Corpus with 84% accuracy on accent presence/absence
prediction, higher than the chance level 55% (the percentage of un-
accented words out of all words). However, it performed poorly on
intonational phrase boundary (IPB) recognition: IPB recognition
rate is only 71%, below the chance level of 83% (the percentage
of IPBs out of all word boundaries). The failure of IPB detection
is mainly caused by the insufficiency of acoustic statistics around
the IPBs.

The acoustic-prosodic features are known to be highly variable
not only in their strength (amplitude, shape, duration) but also in
their time alignment with the syllables (e.g., the peak or valley of
the pitch contour may occur on the syllables preceding or succeed-
ing the accented syllable). In addition, they often suffer from both
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inter-speaker difference (e.g., some speakers use more expressive
prosody than others) and intra-speaker difference (e.g., a speaker
can use different prosody for the same word strings in different
context). In fact, determining prosody labels from only their local
acoustic context is not only difficult for machines but also diffi-
cult for human labelers. While listening to speech, human labelers
often utilizes the extracted syntactic and semantic information to
determine the plausible prosodic labels.

Kompe [6] has proposed another prosody recognition system
that uses neural network for the acoustic-prosodic modeling of
phoneme-wise prosody and a polygram model for the syntactic-
prosodic modeling of word-wise prosody. The polygram model
that he used computes the probability of a prosody label pl given
the surrounding n words: p(pl|wl−n+2, wl−n+3, . . . , wl+n−1).
Kompe’s system achieved 95% IPB recognition rate for his
prosodic-syntactic M labels, labels that are deterministically trans-
formed from syntactic clause boundaries (based on a set of empiri-
cal rules) but better correlate with prosodic phrase boundaries than
syntactic phrase boundaries. Kompe’s syntactic-prosodic model
would be ideal given a large amount of training data. In prac-
tice, conditioning prosody on word strings creates problems of
data-sparseness, especially for small-sized corpora. Despite this
disadvantage, Kompe’s result suggests the potential advantage of
modeling the dependence of prosody over large context (n > 3)
and relatively large variety of word categories rather than the over-
simplified POS classes. Rather than conditioning prosody on
word strings, conditioning prosody on their syntactic representa-
tion (e.g., parts-of-speech) can effectively reduce the entropy of
the syntactic-prosodic models [7].

Motivated by these results, we propose to build a syntactic-
prosodic model using artificial neural networks (ANN), an
acoustic-prosodic model using Gaussian mixture models (GMM),
and a model that couples the syntactic and acoustic models to-
gether as a maximum likelihood recognizer. In section 2, we dis-
cuss these models in details. Section 3 reports the experiments and
the results and conclusions are given in section 4.

2. METHOD

2.1. The syntactic-prosodic model

We propose to model the stochastic mapping from syntactic con-
text to prosody using a multilayer perceptron (MLP) where MLP
is used to compute the posterior probability of the prosody label:

p(pl = i|φl(W )) =
gi(φl(W ))∑
i
gi(φl(W ))

. (1)

In equation (1), pl represents the prosody of the lth word in the
word sequence W , gi(·) is the ith output of the MLP, φl(W )
represents the syntactic information contained in the entire word
sequence W that potentially affects the prediction of pl. Heuristi-
cally, φl(W ) is chosen such that it contains syntactic information
from a fixed window of n words surrounding pl:

φl(W ) = (sl−(n−1)/2, . . . , sl, . . . , sl+(n−1)/2), (2)

where sl represents the syntactic information contained in wl that
affects the prediction of pl. In general, sl can include all possi-
ble information one could obtain from the text analysis (including
semantic information). Parts-of-speech is shown to be most use-
ful, but other type of information such as the location of syntac-

tic boundaries is also helpful. The number of output nodes is de-
termined by the variety of prosodic distinctions modeled at word
level. In this paper, we chose to model only four possible prosody
distinctions for each word: unaccented IPB-medial, unaccented
IPB-final, accented IPB-medial and accented IPB-final. This set
of prosody labels are simplified from original ToBI labels [4] and
are the same as those used in Wightman’s study [5].

The syntactic representation used in our experiment for each
of these n words includes:

1. parts-of-speech,

2. The number of syntactic phrases the word initiates (phrase
opening),

3. The number of syntactic phrases the word terminates
(phrase closing).

A set of 32 POS tags are used, which are the same as those
used in the Penn Treebank. Syntactic phrase structure is automat-
ically labeled by Charniak’s syntactic parser [8]. Since “silence”
is annotated in our word transcription, we augmented our parts-of-
speech set to include a new label “SIL” which is shown to be very
useful for boundary prediction. The “pause” and “breath” cues are
among those that are most robust for boundary prediction. If they
are not annotated in word transcription, they can be inferred from
punctuation.

Each POS tag is mapped to a 33 dimensional binary feature
vector. The features for the phrase opening and closing are integer-
valued and are normalized to real numbers after being divided by
a constant. Each MLP input vector hence contains 35 × n syntac-
tic features. This MLP-based syntactic prosodic model is trained
using standard error back-propagation algorithm.

2.2. The acoustic-prosodic model

To recognize pl from acoustic signal, an acoustic-prosodic model
p(yl|wl, pl) can be used, where yl denotes the acoustic-prosodic
observations over wl. Training this word-level prosody model
p(yl|wl, pl) requires lots of data. Instead, it can be computed from
its component allophonic acoustic-prosodic models:

p(yl|wl, pl) (3)

=
∑

Ql,Hl

∏

(qk,hk)∈(Ql,Hl)

p(yk|qk, hk)p(Ql, Hl|wl, pl)

where p(Ql, Hl|wl, pl) is a pronunciation model representing the
probability of an allophone string Ql = (q1, . . . , qk, . . . , qNl)
and associated prosody string H = (h1, . . . , hk, . . . , hNl) given
prosody dependent word token (wl, pl), and yk represents the
acoustic-prosodic observation over the allophone qk. All the
prosody-dependent pronunciations are pre-compiled in a lexicon.
Note that lexical stress information is conveniently expressed in
this pronunciation model, as is the prosody dependent pronunci-
ation variation (different pronunciation of a word under different
prosody). An example is given below for the word “above”:

• above: ax b ah v

• above!: ax b! ah! v!

• aboveB4: ax b ahB4 vB4

• above!B4: ax b! ah!B4 v!B4
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In our labeling scheme, a postfix “!” is used to label the pitch
accent for both words and phonemes, and a postfix “B4” is used
to label the words and phonemes that are affected by the intona-
tional phrase boundaries. “!” is attached to the phonemes in the
primary lexically stressed syllable because in most cases, only the
primary lexically stressed syllable in an accented word is accented.
We also assumed that preboundary lengthening only occurs in the
rhyme of the last syllables in the pre-IPB words [9]. Therefore,
only the last rhyme of the preboundary words have “B4” attached.
Since a prosody dependent word token (wl, pl) may have multiple
pronunciations, a summation over (Ql, Hl) is included in equa-
tion (3) to sum up all possible lexical entries for (wl, pl).

The primary acoustic cues for prosody are pitch, duration and
energy. Other acoustic cues such as voice quality are useful in gen-
eral but are hard to reliably estimate. In our study, the raw f0 and
RMS energy values are obtained using Entropic XWAVES, com-
mercial software well-known for its high-accuracy pitch tracker.
Duration features are obtained using the time-aligned phoneme
transcription either generated by hand or by automatic methods.

It is important to normalize the pitch and energy features such
that they are least affected by both inter-speaker and intra-speaker
register variation. The raw f0(t) returned by pitch tracker is usu-
ally noisy and contains pitch doubling and halving errors. To re-
move these errors, we trained a 3 mixture Gaussian classifier with
component means restricted to be 1/2, 1, and 2 times the utter-
ance mean f̄0. The f0(t) values classified as samples from either
the doubling cluster or halving cluster are removed. f0(t) are then
divided by f̄0 and converted to log scale:

f̂0(t) = log(f0(t)/f̄0 + 1). (4)

The f̂0(t) values that have small probability of voicing (PV), are
normally extracted from the non-vocalic frames and are not reli-
able. Thus, we eliminated the f̂0(t) whose PVs are smaller than an
empirical threshold. We then linearly interpolated f̂0(t) to recover
the complete f0 contour where the original measures has been pre-
viously removed. The linear interpolation of f0 was proposed by
Kompe [6] and has been shown to be a good normalization method.
Frame-wise RMS energy values are normalized similarly.

f̂0(t) is further normalized by an MLP-based nonlinear trans-
formation function ψ(·) trained to minimize the mean square error
between the transformed feature f̃0(t) and a teaching signal that
indicates the location of the transcribed pitch accents. Our experi-
ments suggest that this nonlinear transformation:

f̃0(t) = ψ(f̂0(t)), (5)

has considerably reduced the intra-speaker differences, especially
the pitch declination effects (the gradual reduction of mean and
variance of f0 toward the end of a prosodic phrase) which is known
to hurt the accent prediction.

Finally, we computed a group of five features as our base fea-
ture set, measured once per segment:

1. allophone duration,

2. average allophone duration over a window of 3 phones,

3. average energy over a window of 3 allophones,

4. the delta of the 3-phone-average of the phoneme-wise mean
f̃0,

5. the delta of item 4.

These features are similar to those in the previous works [6, 9]
and are shown to give the best performance among a set of around
15 features. The base feature vectors are rotated using principle
component analysis (PCA) such that they can be better modeled by
diagonal covariance mixture Gaussians. The deltas of the rotated
feature vectors are also included to introduce context dependence.
Standard expectation maximization (EM) algorithms are used to
train the allophonic acoustic-prosodic models p(y|q, h). Since the
duration features are dependent on input phoneme alignment, we
tested this system using automatic phoneme transcriptions gen-
erated using HMM forced alignment. Only a small degradation
in performance (less than 1%) is observed. We believe that this
is mainly due to the time-insensitive nature of pitch accents and
the already low performance of IPB recognition using only acous-
tic model. In addition, the large number of average operations in
the above feature generating algorithm also helped ameliorate this
problem.

2.3. The coupled model

The syntactic-prosodic model and acoustic-prosodic model can
be coupled as a maximum likelihood recognizer. Let W =
(w1, . . . , wL) be the word sequence, P = (p1, . . . , pL) the
prosody sequence of an utterance. The task of prosody recogni-
tion is to find the optimal prosody sequence P̃ that maximizes the
recognition probability:

[P̃ ]= arg maxP p(Y, W ),

= arg maxP p(Y |W, P )p(P |W ),

= arg maxP

L∏

l=1

p(yl|wl, pl)p(pl|φl(W ))γ , (6)

where Y = (Y1, . . . , YL) is a sequence of L word-wise acoustic-
prosodic observation matrices. The syntactic-prosodic probability
has been raised by a power of γ, a constant that can be used to
adjust the weighting between the syntactic and the acoustic model.

3. EXPERIMENTS AND RESULTS

All our experiments were carried out on the Boston University Ra-
dio News Corpus, one of the largest corpora designed for study of
prosody [10]. The corpus consists of recordings of broadcast ra-
dio news stories including original radio broadcasts and laboratory
broadcast simulations recorded from seven FM radio announcers
(4 male, 3 female). In this corpus, a majority of paragraphs are
annotated with the orthographic transcription, phone alignments,
part-of-speech tags and prosodic labels.

Our first experiment investigated the importance of including
large syntactic context and the phrase opening/closing informa-
tion for syntactic-prosodic modeling. The training accuracies of
the syntactic-prosodic model under different conditions, obtained
from speaker F2B, are listed in Table 1, where n denotes the size of
the syntactic information window (as we have discussed before),
POC stands for the phrase opening/closing information returned
by the Charniak parser. The results in Table 1 indicate that: 1.
large syntactic context is important for both accent and boundary
prediction; 2. POC is more useful in small context (n=1, 3) than
in large context (n=5, 7).

To estimate the performance of all three types of models intro-
duced in section 2 on this corpus, we applied a leave-one-speaker-
out strategy. Data used in the experiments are extracted from 4
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n with POC without POC
Acc. (%) IPB (%) Acc. (%) IPB (%)

1 83.7 89.7 83.6 82.0
3 85.0 91.9 84.9 91.4
5 86.2 93.0 86.0 91.9
7 86.1 93.0 86.4 92.5

Table 1. The accent (Acc.) and the IPB prediction accuracy
(%) of the ANN syntactic-prosodic model under various condi-
tions: n=1,3,5,7, with or without phrase opening/closing informa-
tion (POC), trained and tested on F2B.

Speakers F2B F1A M1B M2B
# Utterances 164 51 38 33
# Words 14844 3098 3366 2363
# Accents 6345 1382 1500 1061
# IPBs 2744 497 445 409

Table 2. The number of utterances, number of words, number of
accents and number of intonational phrase boundaries (IPBs) for
the 4 speakers used in our experiment.

speakers: F1A, F2B, M1B and M2B (where F/M designates fe-
male/male speakers). For each experiment, we used data from one
speaker for test and the other three for training. F2B was never left-
out because it contains the most data. The statistics of the speakers
are listed in Table 2 and the average (weighted by number of words
in each speaker) recognition results are listed in Table 3.

As shown in Table 3, the acoustic-prosodic model alone (AP)
results are slightly worse than Wightman’s results (84% for ac-
cent and 71% for IPB). However, our task is more difficult since
our training set contains no utterance spoken by the test speaker;
whereas Wightman’s training and test set were formed by ran-
domly dividing 2/3 of the data for training and the remaining 1/3
for testing with no speaker distinction. On the other hand, since
our GMM-based acoustic model is simpler than Wightman’s de-
cision tree acoustic model both in the structure and in the dimen-
sionality of input features (all GMMs in our experiments consist
of 3 MGs), slightly worse results are expected. An advantage of
our acoustic model is that it may provide better generalizability to
unseen data (especially data from unseen speakers) than decision
tree models because it is less likely to be overtrained due to its
structural simplicity.

The syntactic-prosodic model alone (SP) results are very good.
Especially, the IPB recognition accuracy has reached 90% which is
7% better than the chance level 83%. Accent can also be predicted
from syntax with an 82.7% accuracy. The coupled model achieved
accent recognition accuracy of 84.2% and IPB recognition accu-
racy of 93%, approaching the agreement rate between different

Accent IPB
SP 82.67 90.09
AP 77.34 68.15
ASP 84.21 93.07

Table 3. The averaged accent and IPB recognition accuracy (%)
for the syntactic-prosodic model alone (SP), acoustic-prosodic
model alone (AP) and the coupled model (ASP) on the leave-one-
speaker-out task on the Radio News Corpus.

human labelers (85-95% for accent, 95-98% for IPB using ToBI)
for both accent and IPB recognition.

4. CONCLUSIONS

In this paper, we developed an ANN-based syntactic-prosodic
model, which can be used to assign prosody labels from text
for speech synthesis, and a GMM-based acoustic-prosodic model
that can be coupled with the syntactic-prosodic model to improve
prosody recognition accuracy for speech understanding systems.
Our experiments on Radio News Corpus show that ANN is very
effective in learning the stochastic mapping from the syntactic
representation of word strings to prosody labels, with an accu-
racy of 82.7% for pitch accent labeling and 90.1% for intonational
phrase boundary (IPB) labeling. When speech and reasonably ac-
curate phoneme transcriptions are given, a GMM-based acoustic-
prosodic model, coupled with the syntactic-prosodic model as
a maximum likelihood recognizer, can achieve the pitch accent
recognition accuracy of 84% and IPB recognition accuracy of 93%
in a leave-one-speaker-out task. These results have considerably
exceeded previous reported results on the same corpus and are ap-
proaching the agreement rate among human labelers.
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