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ABSTRACT

Current objective measures of speech quality [1,2]
attempt to evaluate degraded speech by calculating a
single distance measure between the original signal and
the synthesized signal being evaluated. The distance
measure is usually carried out after both the original and
synthesized signal have been transformed to represent the
effect of the auditory periphery. However, the fact that
the subjective judgement of quality is based on a
multidimensional perceptual space representation
suggests that a measure that is based on predicting a
multitude of independent perceptual characteristics,
would yield better results and be applicable to a wider
range of distortions and speech synthesis systems. This
paper presents such a multidimensional approach to
objective evaluation of speech quality and is directly
motivated by the work of Voiers [3] from which the
subjective evaluation procedure known as Diagnostic
Aceptibility Measure (DAM) was created. While the
DAM is a subjective measure of the detectability of the
distortions identified by Voiers, this work reports on the
first baby steps taken for objective evaluation of a subset
of those same parametric distortions determined to be the
principal components of the quality space from a previous
statistical analysis [4]. 

1. INTRODUCTION

The speech/audio stream from any source has many
attributes. Different subjects will rate the quality of the
stream depending on their individual, unique and often
time-varying tastes of those attributes. The assumption,
often taken for granted, that there should be some
correlation in judgments from different subjects, is not at
all clear. Most objective measures of speech quality are
however based on that assumption. These measures are
thus only valid if the distortion in the synthetic speech
signal is limited to a single type. A slight broadening of
the distortion characteristics would result in the failure of
these objective measures. This is evidenced when the
objective measures fail to evaluate very low rate coders,
speech corrupted by additive background noise or
systems with channel errors [1][2]. A measure designed
to predict specific attributes and characteristics of the

speech signal would allow more accurate evaluation of
speech synthesis systems and a much wider variety of
system distortions. This would enable synthesis
algorithms to be designed to minimize particular
distortions and perhaps allow tailoring speech systems
toward particular audiences and environments.

In order for objective measures to extract
specific attributes of speech characteristics, we need to
know the constituent dimensions of quality. To this end,
Voiers identified a number of different distortions or
parameters [3] which he used to develop the DAM
subjective measure of speech quality. The subjective test
involves asking a number of listeners to detect the
different types of distortions and is based on the
assumption that listener responses about the detectability
of particular distortions are far more likely to be
correlated than their opinions of the overall quality. The
distortions that the listeners are asked to detect, however,
are not orthogonal and many of them are indeed highly
correlated. While in more recent work [5], it has been
shown that only a few dimensions are required for the
subjective evaluation of speech quality, the rationale
behind using a multitude of different but correlated
feature sets may have been to distribute the error allowing
the speech sample to be located precisely in the quality
space.

In previous work [4], we have analyzed a
database of DAM scores (DAM-IIc scores obtained from
Dynastat Inc.) in an attempt to determine the dimensions
of the speech quality space. In the next section, we
present the essential results of that work required to
explain the motivation and methodology of the current
work. In the subsequent section, we describe algorithms
which attempt to isolate and thus independently evaluate
the detectability of a small subset of these dimensions of
speech quality. Results are presented in Section 4.

2. STATISTICAL ANALYSIS OF DAM SCORES

The DAM scores used for the statistical analysis is made
up of 56 speech synthesis systems of various speech
coding algorithms, the rates of which range from 1.2 kbps
to 16 kbps. The source speech material includes clean
speech as well as speech corrupted with various
background noise such as HMMWV military vehicles and
office-babble noise. Each system has six sets of DAM
scores for the three male and three female speakers that
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were used to record the original set of speech samples.
While the DAM has parametric ratings for
bothforeground signal (SQ) and background quality (BQ),
we have concentrated on the signal ratings for this initial
study. Some of the foreground signal quality parameters
and background parameters are described in Table 1.
More detailed information on the DAM may be available
from [3] and [6].

We used Principal Component Analysis (PCA)
to find orthogonal dimensions in the quality space. A plot
showing the amount of variability explained by each of
the principal components is shown in Fig. 1. The first two
components account for 70% of the variance while the
third component accounts for another 10% of the variance
in the data. This vindicates the multidimensionality of the
speech quality space.

The first Principal Component is mostly
weighted by the SF, SB and SI parameters and least by
the SH parameter. The second principal component, on
the other hand, is weighted mostly by the SH parameter
and least by the SF, SB and SI parameters. Plotting the
weights for each of the principal components allows us to
visualize the quality space. In Fig. 2, the weights of PC-1
vs PC-2 have been plotted, while in Fig. 3, a 3-
dimensional plot of the weights of PC-1, PC-2 and PC-3
have been plotted.

Description Example

SD Harsh Peak Clipped Speech
SI Interrupted Packetized Speech with Glitches 
SF Fluttering Interrupted Speech 
SB Babbling Systems with Errors 
SH Thin High Passed Speech
SL Muffled Low Passed Speech 
ST Thin Band Passed Speech 
SN Nasal 2.4 kbps Systems

BNH Background
Hiss

Background White Noise

BNL Background
Muffled

Background Muffled Noise

Table 1: Signal Parameters in the DAM test 

From the graphical representation of Fig 2 and 3,
the quality space can be seen to be separated into
temporally localized and frequency localized distortions.
The temporally localized distortions seem to be confined
within the SD (harsh) parameter on one end and the SB
(babble), SI (interrupted) and SF (fluttering) parameters
which form a tetrahedron. The difference between SD and
the {SB, SI and SF} parameters can be interpreted to be
in the distribution of the temporal distortions. A harsh
effect is perceived when the temporal distribution of the

distortions is dense as opposed to a sparse temporal
distribution which excites the {SF, SI and SF}
parameters.

The SH (high passed) and SL (low passed)
parameter seem to form the vertices of the frequency
localized distortion space. The position of the remaining
two parameters, ST (thin) and SN (nasal) in Fig 4, seem
to indicate that they are excitable both by temporal and
frequency localized distortions.

A Multidimensional Scaling (MDS) Analysis
reinforced the findings of the above PCA Analysis [4]. 

Figure 1: Amount of variability explained by each of the
principal components. 

Figure 2: Weights of Principal Component One and Two.

3. OBJECTIVE DETECTION OF DAM
FOREGROUND SCORES

Both the PCA and MDS results reveal that the SL-SH
vertices form one of the three principal axis of the quality
space. SH has the highest weighting for PC2 whereas SL
has the highest weighting on PC3. PC2 and PC3 combine
to explain 25% of the variability of the DAM scores
(Fig.1). Since the perception of “low-pass” and “high-
pass” distortion is localized in the frequency domain, it
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Figure 3: Weightings of Principal Components One, Two and
Three.

ought to be possible to isolate these distortions from the
output of a cochlear model where the signal is essentially
resolved into frequency components along the length of
the cochlea. This is thus the motivation for the procedures
depicted in Fig. 4 (and described in the following
paragraphs) to predict the detectability of the SL, SH and
BNH distortions. While other parameters carry more
weight in the quality space, the algorithms required to
isolate the time localized distortion parameters will
require further work outside the scope of this initial pilot
study into the feasibility of a multidimensional measure.

The cochlear model used for this work is a non-
linear two-dimensional model of the cochlear
hydrodynamics incorporating a model of the Outer Hair
Cell motility [7]. It is envisaged that the use of this
physiologically accurate model of the auditory periphery
will yield better results than the usual functional linear
models of hearing used in [1] and [2].

In order to isolate individual distortions, we had
to make a number of assumptions. The first hypothesis
was to assume that the perception of background quality
distortion was due to additive noise that is not correlated
with the speech signal. A simple model to extract the
uncorrelated noise from the correlated noise is to sample
the “silence periods” between sentences. This background
noise subtracted from the segments where there is voice-
activity would “eliminate” the BQ distortions from the
SQ distortions. The second hypothesis for the cognitive
model is that the perception of foreground signal
distortions (SQ parameters) is mainly carried out in the
voiced regions of the signal rather than unvoiced regions.
Since the statistical characteristics of the voiced segments
are usually quite distinguishable from noise, this
hypothesis is not totally unfounded. 

Figure 4: Block Diagram of SL, SH, BNH estimation
algorithm.

The original and sytnthesized signals (s[n] and
s'[n]) were pre-processed to carefully match the pressure
levels presented to the subjects (this is required as the
non-linear cochlear model is sensitive to pressure levels),
time-synchronized (with sub-sample resolution denoted
by Z-L in Fig. 4) [8] to account for delays in the
synthesis/coding algorithms and put through an external
ear model. Following the pre-processing, the auditory
model is used to convert the pressure signal to Inner Hair
Cell (IHC) responses. The IHC response was squared to
produce a quantity which resembles instantaneous partial
loudness, L(x,t) (L'(x,t) for the synthesized signal). Here x
represents the length along the cochlea which has a one-
to-one mapping with frequency (given by the cochlear
map) and t is time. High frequencies are represented by
small values of x due to the nature of the cochlea where
high frequencies are resolved at the basal end of the
cochlea. A low-pass operation thus involves considering
L(x,t) at the higher values of x while a high-pass operation
looks at the lower values of x.

To ensure that the additive uncorrelated noise
hypothesis for the BQ scores was correct, we averaged
the high frequency L(x,t) response difference (in the
silence periods) and performed a linear regression with
one of the high frequency BQ (BNH) parameters. The
cutoff frequency/position XTH1, was found by maximizing
a correlation cost function. As revealed in Fig. 6, the
correlation between the predicted and subjective BNH
parameter was very high (R=0.995). This highly precise
measure (useful in itself), is capable of resolving some
very fine differences between speech coders. The
predicted BNH is thus given by,

N(x,t)

P BNH
� �

t � silence

�

x � 0

X
TH1

L x , t � L ' x , t 1
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Figure 5. Scatter plot predicted vs actual SH and SL scores.

To isolate the SL-SH distortions from the
background distortions, we first subtract the background
noise energy N(x,t), estimated in the silence regions of the
signal (see Fig. 4). Next, we estimated this isolated SQ
noise in voiced sections of the speech signal. If low-pass
distortions are being perceived then there has to be large
high frequency errors. Thus the SL score can be estimated
using,

Similarly, the SH score can be estimated using,

The cutoff frequencies/positions XTH1 and XTH2 were again
determined by maximizing the correlation cost function.
XN is the largest value of x-index from the cochlear model.

Figure 6. Scatter plot predicted vs actual BNH scores.

4. RESULTS AND CONCLUSION

A scatter plot showing the predicted SH, SH and
BNH scores versus actual scores is shown in Figures 5
and 6 respectively. The results show the values for data
which were outside of the training set during calculation
of the regression coefficients. The Pearson correlation
coefficient between the predicted and actual DAM scores
were 0.932 and 0.944 for the SH and SL parameters
respectively and 0.995 for the BNH score. Future work
will focus on predicting temporally localized distortions
to predict scores such as SD and SF which account for a
large portion of the variability. The current results seem
to suggest that a multidimensional objective meausre may
well be viable. 
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P SL
� �

t � voiced

�

x � 0

X
TH2

L x , t � L ' x , t � N x , t 2

P S H
� �

t � voiced

�

x � X
TH3

X
N

L x , t � L ' x , t � N x , t 3
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