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ABSTRACT

This paper proposes modifications to improve the recognition

performance obtainable by the ETSI standard distributed speech

recognition encoder, Aurora [1]. The proposed modifications are

standard compliant, i.e., they require no algorithmic modifications

to the Aurora operation. Performance improvements are achieved

by more efficiently distributing the available bit budget among the

seven (different) 2-dimension vector quantizers (VQs), used by

Aurora. Improved bit-allocation to the different sub-vectors used

in Aurora is achieved by incorporating the importance towards

recognition of each of the sub-vectors into the bit-allocation al-

gorithm. The available bits are efficiently distributed among the

sub-vectors by allocating a larger fraction of the available bits

to the more important sub-vectors and hence maximizing recog-

nition accuracy. The proposed bit-allocation algorithm is based

on a novel mutual information (MI) measure. The MI measure

quantifies the information content between a sub-vector and the

class label and hence is a good indicator of importance of the co-

efficient towards recognition. It is shown that the proposed MI

based method outperforms both the standard Aurora encoder and

an encoder designed using traditional mean square error based bit-

allocation. For the TIDIGITS connected digits recognition task

a 15.2% relative decrease in word error rate (WER) was possible

with the proposed modified MI based Aurora encoder when com-

pared to the recognition performance achieved using the standard

Aurora encoder.

1. INTRODUCTION

In distributed speech recognition (DSR) [2], low complexity

clients (e.g., cellphones, PDAs) which do not have sufficient com-

putation/memory resources to support complex recognition tasks,

acquire speech and transmit it to a remote server for recognition.

Instead of transmitting the speech utterance, feature vectors used

by the recognizer are extracted, compressed (to conserve band-

width) and transmitted. High dimensionality of the feature vector

requires, for computational reasons, that each vector of the speech
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feature be quantized with scalar or split-vector quantizers. ETSI

has standardized Aurora [1], an encoder incorporating a split VQ

architecture (7 VQs/sub-vectors are used) for encoding speech fea-

ture vectors in DSR applications. The Aurora standard allocates

eight bits for the first sub-vector and six bits for each of the other

6 sub-vectors (see Table 1).

It is well known that the lower feature coefficients are more

“important” for recognition than the higher coefficients [3]. There-

fore given a bit budget constraint (the constraint could be due to

bandwidth/power limitations), to ensure that the degradation in

recognition performance due to compression is minimized it is vi-

tal that a larger fraction of the bits be allocated to the more impor-

tant coefficients. This enables coefficients important for recogni-

tion to be represented with higher fidelity than the less important

coefficients. Aurora clearly does not make use of the coefficient

importance, since it allocates the same number of bits to both the

lower and higher feature sub-vectors.

One of the challenges in achieving an optimal bit-allocation

is that it is not straight-forward to translate coefficient importance

into actual bit requirements (for the different coefficients). Tra-

ditionally, bit-allocation techniques rely on the mean square error

(MSE) metric to allocate bits to the different coefficients. This

does ensure that the MSE between the original vector and the com-

pressed vector is minimized. However, it is not clear if MSE is

the right optimization criteria in recognition (classification) ap-

plications [4]. Consider the example in Figure 1. It is obvious

that dimension 2 has significantly more energy than dimension

1. However, the class overlap along dimension 1 is significantly

lower than in dimension 2. An MSE based bit-allocation tech-

nique would allocate more bits to the coefficient along dimension 2

which is the less important coefficient for classification. However,

for classification it is more desirable to represent the coefficient

along dimension 1 more accurately to ensure minimal degrada-

tion in classification performance. Hence there is a necessity for

using a new distortion criteria which correlates better with the im-

portance of the coefficient towards recognition than was possible

using the MSE metric.

In this paper, we focus on the information-theoretic measure

of mutual information (MI) [5] to define a sub-vector based dis-

tortion measure mutual information loss (MIL). We propose a new

bit-allocation technique which incorporates the MIL distortion and

I - 4850-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



−20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

25

Dimension 1

D
im

en
si

on
 2

Fig. 1. A two class classification task. Observe that the signal en-

ergy is significantly higher along dimension 2. However the class

separation (discriminability) is clearly better along the low signal

energy dimension 1. It is clear that coefficients with higher signal

energy are in general not necessarily the more important coeffi-

cients for classification.

allocates bits to different components of the feature vector to en-

sure that the encoded data retains as much information about the

class labels as possible. The performance benefits of our proposed

MIL distortion based bit-allocation is demonstrated by applying

it to Aurora. Additionally, the proposed modifications are stan-
dard compliant, i.e., they do not require modifications to either

the encoder or decoder operations (except that different VQ code-

books need to be used). Furthermore, we also show that MIL

bit-allocation is significantly better than the traditional MSE bit-

allocation for recognition applications.

For the TIDIGITS digits recognition task using our pro-

posed MIL bit-allocation, a 15.2% relative reduction in WER was

achieved compared to the standard Aurora encoder. A 12% relative

reduction was achieved compared to a MSE bit-allocation. Similar

recognition performance improvements can be expected for more

complex recognition tasks.

The paper is organized as follows. Section 2 describes the

Aurora encoder and the MI based bit-allocation algorithm used to

improve it. Experiments and results are presented in Section 3.

Finally conclusions and future work is given in Section 4.

2. AURORA OVERVIEW

2.1. Aurora Operation

In the Aurora standard the speech features used for recognition are

the first 12 MFCCs: c1-c12; the zeroth cepstral coefficient (c0) and

the energy in the frame (E). The 14-dim feature vector is split into

seven 2-dim sub-vectors. Each of the sub-vectors is encoded with a

different 2-dim VQ. The standard computes a feature vector every

10ms and allocates 44 bits to each feature vector to achieve a total

bitrate of 4.4 kbps1 . The number of bits allocated to the different

sub-vectors are shown in Table 1. Notice that 8 bits are allocated to

the (c0,E) sub-vector and 6 bits are allocated to each of the other 6

sub-vectors. It is not clear if the bit-allocation in Table 1 is optimal.

For example, it is well known that the sub-vector (c1,c2) is more

14 additional bits are used for channel coding

important for recognition than the sub-vector (c11,c12) [3]. Hence

allocating the same number of bits for both these sub-vectors ig-

nores the different contributions of the sub-vectors towards recog-

nition performance. Hence it can be expected that optimizing the

bit-allocation by incorporating the importance of the sub-vectors

can yield improved recognition performance.

Sub-vector Bits allocated

c0,E 8

c1,c2 6

c3,c4 6

c5,c6 6

c7,c8 6

c9,c10 6

c11,c12 6

Table 1. The sub-vectors used by Aurora encoder. The number of

bits allocated to each sub-vector is not necessarily reflective of the

importance of the sub-vector towards recognition. While it is well

know that lower sub-vectors contribute more towards recognition,

they have been allocated the same number of bits as higher sub-

vectors.

2.2. Modified Aurora with Mutual Information Based Rate Al-
location

It is possible to improve the performance of Aurora (or other DSR

encoders) (i) by using a modified encoder operation based on VQs

optimized for a distortion measure other than MSE [6], or (ii) by

the use of entropy encoders to reduce the bitrate. However these

modifications will not be standard compliant. In this paper we con-

centrate on the bit-allocation problem. The advantage of choos-

ing bit-allocation is that it only requires that the VQ codebooks

be changed. Therefore there will be no algorithmic change to ei-

ther the encoder or the decoder. The encoder can indicate to the

decoder the codebook it has used, thus enabling the decoder to

choose the right codebook while decoding the transmitted data.

Traditionally, bit-allocation has been performed to minimize

the MSE metric. However as mentioned before MSE is not the

right distortion criteria for use in classification tasks. The objec-

tive of the recognizer is to identify the class (phonemes, words,

sentences) from the (speech) feature vectors. Each of the feature

vectors carries information about the class it belong to, and it is

this information that is required by the recognizer. Hence it seems

intuitive that the goal of the encoder should be to compress data

such that the compressed data retains maximal information about

the class labels.

Mutual information (MI) between the class labels and feature

vectors is given by

I(X; C) =

∫
x

f(x)
∑

c

p(c|x)log

(
p(c|x)

p(c)

)
dx (1)

Fine quantization was used to find an empirical estimate p̃(c|x)
of p(c|x) from labeled training data [7]. Fine quantization was

so chosen to ensure that recognition with the finely quantized data
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introduced negligible degradation to the recognition performance.

MI provides a quantitative method of identifying the information

carried by the feature vectors about the class labels. Table 2 shows

the MI between the seven sub-vectors in Aurora and phoneme class

labels. We can observe that lower cepstral coefficients carry sig-

nificantly more information than the higher cepstral coefficients.

This fact can be used by bit-allocation algorithms to optimally al-

locate bits to the different sub-vectors so as to maximize the mutual

information between the quantized data and the class labels for a

given bit budget.

Sub-vector Mutual information

(in bits)

c0,E 0.94

c1,c2 1.30

c3,c4 0.86

c5,c6 0.57

c7,c8 0.47

c9,c10 0.44

c11,c12 0.33

Table 2. The mutual information between the feature sub-vectors

and the phoneme classes. Observe that the lower sub-vectors carry

significantly more information about the phoneme classes when

compared to the higher sub-vectors.

Let X = [X1, . . . ,XN] be a feature vector, where Xi is the

ith sub-vector of X. The generalized Breiman, Friedman, Ol-

shen, and Stone (GBFOS) algorithm [8] allocates bits Bi, i =
1, . . . , N ; s.t.

∑
i Bi ≤ B, to each of the components, where B is

the total bit budget. In traditional MSE bit-allocation, rate vs dis-

tortion (MSE) points are calculated for each of the components.

Then the combination of points which satisfy the bit budget while

yielding the minimum MSE are selected. For MIL quantizers the

distortion is MI loss, hence several rate vs mutual information loss
points are calculated for each of the components. Then given the

bit budget B, these calculated points are used by the GBFOS algo-

rithm to allocate bits, Bi, i = 1, . . . , N ; s.t.
∑

i Bi ≤ B, to each

of the components, so that the MI loss MIL =
∑N

i=1 I(Xi; C)−
I(X̂i; C), is minimized, where X̂ = [X̂1, . . . , X̂n] is the quan-

tized vector and

I(Xi; C) − I(X̂i; C) =

∫
x

f(xi)
∑

c

p(c|xi)log

(
p(c|xi)

p(c|x̂i)

)
dx

(2)

where p(c|xi) is the probability of the class label given the ith fea-

ture sub-vector, p(c|x̂i) is the probability of the class label given

the ith quantized feature sub-vector and f(xi) is the pdf of the ith

feature sub-vector. From the Markov chain C ↔ Xi ↔ X̂i, we

can find

p(c|x̂i) =

∫
xi

p(c|xi)p(xi|x̂i)dxi (3)

The modified GBFOS algorithm is summarized below.

Algorithm 1 (Modified GBFOS Algorithm)
Step 1 : For n = 1, . . . , N , set Bn = q. This is the initial bit

allocation.
Step 2 : Calculate, for n = 1, . . . , N , for i = 1, . . . , Bn,

Sn(Bn, Bn − i) =
∆MILoverall

∆Boverall
(4)

= −MILn(Bn) − MILn(Bn − i)

i

Step 3 : For each n = 1, . . . , N , determine i for which
Sn(Bn, Bn − i)is minimized.
Step 4 : Determine the component for which Sn(Bn, Bn − i) is
the lowest. Assume it is component l. (If minimum Sn(Bn, Bn−i)
is not unique, then select all components with this value). Set
Bl = Bl − i.
Step 5 : Calculate Balloc =

∑
n Bn. Check if Balloc ≤ B; if so

stop.
Step 6 : Repeat Steps (2), (3), (4) and (5).

The bit-allocations obtained by our method is shown in Ta-

ble 3. Observe that our bit-allocation allocates 7 bits for the sub-

vector (c1,c2), while only 4 bits are allocated for the (less impor-

tant) sub-vector (c11,c12). The Table also shows the bit-allocation

obtained by using the MSE bit-allocation algorithm.

Sub-vector Bits allocated

Aurora MSE MIL

c0,E 8 8 11

c1,c2 6 9 7

c3,c4 6 7 6

c5,c6 6 6 6

c7,c8 6 5 5

c9,c10 6 5 5

c11,c12 6 4 4

Total 44 44 44

Table 3. The bit-allocations for the different encoders. Notice

that in each case the total number of bits allocated are 44. Also

notice both the MSE and MIL bit-allocations tend to reduce the

bits for the higher sub-vectors and allocate these to the lower sub-

vectors. The MSE bit-allocation optimizes the allocation to en-

sure that MSE is minimized. However, the MIL bit-allocation en-

sures that the information contained in the quantized data about

the phoneme classes is maximized.

3. EXPERIMENTS AND RESULTS

The experiments were carried out on the TIDIGITS corpus using

HTK 3.2 speech recognizer, with MFCCs extracted using the Au-
rora front end. Only the coefficients c1 to c12 and E were used dur-

ing recognition (the zeroth coefficient (c0) was not used2). Only

the utterances from the male and female speakers were used. The

database consists of variable length connected digit utterances (1

to 7 digits per utterance). The models on the server were initially

trained using clean speech from the “train” part of the database

2The speech recognizer used HTK 3.2, does not support the simultane-

ous use of both c0 and E, hence c0 was not used during recognition
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(8623 utterances). Each digit was modeled using a 10 stage HMM

with 16 GMMs per state. A silence model was used before and

after the digit utterance to take care of the pre and post utterance

silence. In addition a short pause model was used to account for

inter-digit short pauses. The testing (using utterances from the

“test” part of the database (8700 utterances)) was carried out using

(i) unquantized features (ii) Aurora encoded features (iii) MSE bit-

allocated Aurora encoded features (Aurora-MSE) (iv) proposed

MIL bit-allocated Aurora encoded features (Aurora-MIL). Only

the MFCCs were computed and encoded. The ∆ and ∆∆ coeffi-

cients were computed from the encoded MFCCs.

The MI between the features (both clean and encoded) were

computed using the TIMIT database. The class labels were the 45

phonemes as defined in TIMIT. This computed information was

used to perform bit-allocation for the TIDIGITS recognition task.

It can be expected that better performance can be achieved if the

MI was computed using the TIDIGITS database, with the class

labels being the different digits. However, we choose not to do

so to indicate the generality of our proposed approach, i.e., the

proposed approach is not task dependent.

First, observe from Table 4 that the MI between the quantized

data and the phone classes is 3.86 bits for the Aurora-MIL encoder

while it is 3.76 bits and 3.78 bits for the standard Aurora encoder

and the Aurora-MSE encoder respectively. It can be expected that

this increased MI in the compressed data will translate into supe-

rior recognition performance. Looking at the recognition results in

Table 4 obtained for the different cases, we observe that this is in-

deed true. Observe that with the Aurora encoder there is a 53.5%

degradation in WER compared to using clean speech. However

when MIL bit-allocation was incorporated into Aurora the degra-

dation dropped to 30.2%, i.e., a 23.5% relative or 0.2% absolute

reduction in WER. Also observe that the MIL bit-allocation clearly

outperforms the MSE bit-allocation, indicating that the MIL mea-

sure is better than the MSE metric for recognition applications. It

can be expected that similar advantages can be achieved for other

recognition tasks and scenarios when noisy speech is used during

recognition.

Encoder Percentage Percentage Total MI

WER degradation (in bits)

Clean 0.86 - 4.91

Aurora 1.32 53.5% 3.76

Aurora-MSE 1.27 47.7% 3.78

Aurora-MIL 1.12 30.2% 3.86

Table 4. WER for TIDIGITS recognition task for the different

encoders. Clearly the proposed MIL bit-allocated Aurora-MIL en-

coder significantly outperforms both the other encoders, achieving

23.3% relative WER reduction over the standard Aurora encoder.

Also notice as expected the MI between the encoded data and the

phoneme classes is maximum for Aurora-MIL when compared to

the other encoders.

4. CONCLUSIONS AND FUTURE WORK

We proposed a mutual information loss based bit-allocation to im-

prove the performance of Aurora. The proposed modifications

were standard compliant, requiring no algorithmic changes to ei-

ther the encoder or decoder operations. It was shown that the pro-

posed MIL bit-allocated encoder outperformed both the standard

Aurora encoder and a traditional MSE based bit-allocation. One

of the contributions of this paper was demonstrating that the use of

application tailored distortion measures can yield significant per-

formance improvements when compared to using traditional MSE

metrics.

While in this paper we concentrated on standard compliant

modifications, further work will involve incorporating mutual in-

formation into both the design and encoding operations to enable

further performance improvements. Also, the proposed techniques

will be evaluated for other recognition tasks, involving continuous

speech recognition and recognition tasks with noisy databases. Fi-

nally, to ensure standard compliance, we did not investigate group-

ing of coefficients to form sub-vectors. Further work will involve

selection of both size and components to be used to construct op-

timal sub-vectors.
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