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ABSTRACT

In this paper we investigate the trade-off between delay and
signal quality in adaptive time-segmentation for speech cod-
ing. A variable rate sinusoidal coder with adaptive segmen-
tation and bit allocations is proposed and implemented with
specifiable look-ahead. Objective and subjective results in-
dicate that adaptive time-segmentation is advantageous even
with low delay (30 ms), and that quality only increases with
the delay until approximately 100 ms.

1. INTRODUCTION

Adaptive time-segmentation has been shown to significantly
improve the rate - distortion tradeoff in speech and audio
coding [1], [2]. However, such a scheme requires a certain
look-ahead, making it a less obvious choice for real-time
applications, such as telephony. Therefore, it is interesting
to investigate exactly how much delay is necessary in order
for the time-segmentation to have the desired effect.

Time-segmentation schemes seem especially well suited
for packet based telephony since it allows for asynchronous
transmission. With this in mind, frame representations should
be self-contained so that packets can be decoded indepen-
dently, this way making the speech coder robust towards
packet losses. Therefore, we shall also propose a sinusoidal
reference coder fulfilling this requirement. The coder struc-
ture resembles that of e.g. [3], [4], the main difference be-
ing in the phase quantization. By incorporating this coder
into the rate-distortion based time-segmentation strategy of
[1] we obtain a variable rate speech coding algorithm with
specifiable delay.

The sinusoidal reference coder will be described in the
next section. Following this, Section 3 gives a brief review
of the time-segmentation algorithm as well as the limited
delay implementation. Objective and subjective results are
presented in Section 4 before Section 5 concludes on the
work.

∗Christoffer Rødbro’s work was carried out during a stay at the Delft
University of Technology.

2. SINUSOIDAL CODER

In a harmonic sinusoidal model a frame of speech is repre-
sented by a weighted sum of harmonically related sinusoids:

ŝ(t) =
K∑

k=1

Ak cos (kω0t + φk) . (1)

Here, K is the number of components, determined by the
fundamental frequency ω0. Moreover, t is the time-index
t = −L/2, . . . , L/2 − 1 with L being the frame length,
whereas Ak and φk are the amplitude and phase of the k’th
component, respectively. This model is physiologically mo-
tivated for voiced speech only, however it is well-known that
acceptable perceptual quality can be achieved for unvoiced
speech as well, as long as the number of sinusoidal compo-
nents is high enough compared to the frame length. Specif-
ically, for unvoiced frames we found it sufficient to choose
ω0 so that K = L

4 .
In voiced frames a voicing cutoff frequency is estimated

based on a SNR-like measure as in [4], above which compo-
nents are classified as being unvoiced. The main difference
between unvoiced and voiced components is that subframe
phase randomization [5] is applied for the synthesis of un-
voiced components.

2.1. Parameter estimation and quantization

The fundamental frequency ω0 is estimated based on the
YIN algorithm proposed in [6] and quantized in the log-
domain using 8 bits. YIN relies on a measure of unvoiced-
to-total power ratio, the value of which has been found a
reasonable voiced/unvoiced classifier.

Once ω0 is determined, estimation of amplitudes and
phases can be formulated as a linear weighted least squares
(WLS) problem, the weighting being determined by the anal-
ysis/synthesis window, see [3] for the original idea. How-
ever, due to deviations from the harmonic model or inac-
curacies in the fundamental frequency estimate there might
be a slight mismatch between the harmonic frequencies kω0
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Voiced Unvoiced
AR order 8, 12, 16, 20 6, 10
Phase bits 20, 40, 60 -

Table 1. Allowed AR model orders and number of phase
bits forming the 14 coding templates.

and the spectral peaks ω̂k of the signal. Therefore, to avoid
underestimation of the amplitudes, the WLS is computed
at the slightly modified harmonic frequencies ω̂k. The es-
timated amplitudes are represented by an auto-regressive
(AR) model using discrete all-pole (DAP) modeling [7], and
the log-gain is quantized using 5 bits.

The wish for interframe independence rules out time-
differential encoding of the phases. Instead, we exploit that
for voiced speech the time-domain maxima of the harmonic
components exhibit a highly structured pattern that can be
represented well by a piece-wise linear function. The num-
ber of linear functions, and thereby the accuracy of the rep-
resentation, is determined by the number of bits allocated
for the phases.

For further details on the speech coder, see [8].

3. ADAPTIVE TIME-SEGMENTATION

In order to find an adaptive time-segmentation we use the
algorithm introduced in [1], which is based on the following
minimization problem:

minimize : D (τ,p(τ))
s.t. : R (τ,p(τ)) ≤ RC

(2)

Here, D is some measure of the distortion between the orig-
inal and the encoded signal, whereas R is the bit rate ob-
tained, and RC the requested bit rate. The time-segmentation
τ =

{
s1, s2, . . . , sσ(τ)

}
consists of σ(τ) variable length

segments si, each having a length equal to an integer num-
ber of grids. The grid length determines the segmentation
resolution, in this application chosen at 5 ms.

The vector p(τ) =
{
p(s1), p(s2), . . . , p(sσ(τ))

}
denotes

the coding templates used to encode the segments. In the ap-
plication at hand, a coding template specifies the AR-order
used to model the amplitudes and the number of bits spent
on phase encoding. Table 1 shows the templates we used
for the experiments described in the next section.

The problem (2) is solved by minimizing the Lagrangian
J(τ,p(τ)) = D(τ,p(τ)) + λR(τ,p(τ)) using dynamic
programming (see [1] for details), where λ > 0 is iterated
over until the requested bit rate RC is reached.

3.1. Distortion Measure

In order to effectively minimize the Lagrangian with dy-
namic programming it is required that the distortion mea-
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Fig. 1. Hanning windows extracting one grid add up to han-
ning tapered windows with overlap region two grids.

sure is additive and independent across frames, so that the
total distortion can be found by adding the distortion of all
frames. However, when using spectral magnitude based
metrics such as spectral distortion (SD) it was observed that
the algorithm sometimes leads to segmentations with non-
stationary frames. The reason is that the average spectra are
sometimes modeled quite well by the stationary sinusoidal
model. To avoid this problem, the distortion is measured
per grid, i.e. in sub-windows within each analysis frame,
see Figure 1. The sub-windows are 15 ms hanning with 10
ms overlap, adding up to a hanning tapered window with
10 ms overlap region (= analysis/synthesis window). Note
that this approach limits the minimum window length to 20
ms. In this way, we apply the SD, measured at the harmonic
frequencies:

D(s, ŝ) =

√√√√202

K

K∑
k=1

(
log |S(ω̂k)| − log |Ŝ(kω0)|

)2

.

(3)
Here, S(ω̂k) is the spectrum of the original signal at the
spectral peaks, whereas Ŝ(kω0) is the spectrum of the syn-
thesized signal, measured at the harmonics.

3.2. Finite delay

In order to implement the time-segmentation algorithm with
finite delay, we introduce the concept of a superframe, the
length of which will be the algorithmic delay. The optimal
segmentation and templates are found for this superframe
and we now have two possibilities as illustrated in Figure
2: either all frames within the superframe are transmitted,
and a new superframe is made starting where the old one
ended. We call this approach “shifting window”. Alter-
natively, only the left-most frame (i.e. the oldest samples)
is transmitted and an equivalent number of new samples is
concatenated on the right-hand side. This approach is called
“sliding window”. As indicated in Figure 2 the latter ap-
proach seems preferable since it only temporarily enforces
a frame boundary at the end of each superframe.
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Fig. 2. Time-segmentation with shifting (a) or sliding (b)
superframes. Ticks on the time axis represent the grids.

2000 3000 4000 5000 6000 7000 8000
2

2.3

2.6

3

3.3

3.6

4

Rate [bits/s]

M
ea

n 
pe

r 
gr

id
 d

is
to

rt
io

n

Sliding window
Shifting window

Fig. 3. Rate - distortion pairs for a speech signal when using
shifting and sliding superframes of length 60 ms. Shown for
3 seconds of male speech.

A distortion/rate comparison of the two methods is shown
in Figure 3. As expected we see that the sliding window
outperforms the shifting window. However, we also see that
the “shifting” curve is convex as expected but the “sliding”
curve is not. The reason for this is that in the first case,
we perform optimal segmentation within each superframe
which results in a convex R-D curve for each, the sum of
which is also convex. In the “sliding” case the segmentation
of one superframe will influence the contents of the next and
thus the minimization problems are not independent.

3.3. Rate control

As described in the beginning of this section, (2) is solved
by minimizing a Lagrangian cost function for different val-
ues of λ, each corresponding to different total bit rates. In
situations where coding delay is low (at least lower than the
duration of the signal to be encoded), finding the optimal λ
is a nontrivial task since we have to make a decision how to
segment and which coding templates to use without know-
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Fig. 4. Distortion as a function of delay with different target
bit rates averaged over 8 speech samples (approximately 4
seconds each). Some points are not shown because the re-
quested rate cannot be reached with every delay.

ing how many bits we need to spend for the remaining part
of the signal. Solving this problem, however, falls outside
the scope of the work presented here. For the simulations
described in the next section, we find the optimal segmen-
tation and coding templates for a given λ using finite look-
ahead, and determine at the end, after the entire signal has
been encoded, whether the target rate was reached or not. If
not, λ is iterated until the desired rate is met.

4. RESULTS

Figure 4 shows the relationship between algorithmic delay
and distortion for target bit rates ranging from 2 - 6 kbps.
It appears that the distortion reduction from allowing more
than 100 ms delay is negligible, and that quality can be in-
creased through adaptive segmentation even with very short
delay.

4.1. Subjective listening test

To validate the objective results above, subjective listening
tests were carried out. Listeners were asked to rank the pro-
cessed speech samples relatively on a 5 point scale, enforc-
ing use of the entire scale by ranking the worst sample at 1
and the best at 5. The original was presented for reference
and each sample could be played as many times as needed.
The test was conducted with high-quality headphones using
the benchmark software described in [9].

The speech samples consisted of 4 male and 4 female of
duration 2-5 seconds, the different encoded versions being:

1. The original.
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Fig. 5. Mean score results for subjective listening test.

2.-4. Adaptive segmentation with 500 ms, 100 ms and 30
ms delay, respectively, and adaptive coding templates.

5. Fixed segmentation with 30 ms frames and adaptive
coding templates.

6. Fixed segmentation with 30 ms frames always us-
ing the cheapest template (AR-8 and 20 phase bits
in voiced, AR-6 in unvoiced).

The first and last items were included as “anchor excerpts”
in order to facilitate use of the entire scale 1 to 5. For items
2 to 5 the bit rate was 3.5 kbit/s. This bit rate was chosen
since it could be reached with the fixed segmentation (item
5) for all test samples. The rate for item 6 varied between
2.7 - 3.1 kbit/s.

The average scores for 10 listeners are shown in Figure
5. The results validate the observations from the previous
section: there is a considerable gain from fixed to variable
segmentation at 30 ms delay, and again from 30 ms to 100
ms delay, whereas there is little difference between 100 ms
and 500 ms delay. It should be noted that the absolute scores
cannot be compared to MOS scores, since use of the entire
scale was requested.

The statistical significance of the incremental improve-
ments indicated in Figure 5 can be assessed by a paired t-
test. The reason for using a paired test is that the level of
the scores varies from listener to listener and from excerpt
to excerpt, so that the absolute scores are not independent.
Instead, the paired test works on the observed differences
between two setups, e.g. between 30 ms and 100 ms de-
lay. The H0 hypothesis is that the mean of the underlying
(assumed Gaussian) distribution is zero, µ∆ = 0, and the
alternative H1 hypothesis that µ∆ > 0. Table 2 lists if H0

is accepted at the 0.05 significance level, the p-values (i.e.
the significance level above which H0 is rejected) and the
95% confidence interval for µ∆.

5. CONCLUSION

From Table 2 we see that there is a statistically significant
difference between 30 ms fixed, 30 ms adaptive, and 100

H0 p-value µ∆ conf.
30 ms, Adap. − Fixed Rej. 1.5 · 10−7 > 0.4
100 ms − 30 ms Rej. 4.5 · 10−6 > 0.3
500 ms − 100 ms Acc. 0.12 > −0.03

Table 2. Results of t-tests for the observed score differ-
ences.

ms adaptive, but not between 100 ms and 500 ms. Thus,
we conclude that speech quality can indeed be increased
through adaptive segmentation, even with little additional
look-ahead. Also, the increase in quality saturates around
100 ms of delay. Strictly spoken these conclusions can only
be made for the sinusoidal reference coder used here, how-
ever, they are believed to be valid for speech coding in gen-
eral. This is of great importance since it indicates the feasi-
bility of adaptive time-segmentation for real-time voice ap-
plications.

6. REFERENCES

[1] P. Prandoni and M. Vetterli, “R/D Optimal Linear Pre-
diction,” IEEE Trans. on Speech and Audio Proc., vol.
8, no. 6, pp. 646–655, Nov. 2000.

[2] R. Heusdens et al., “Sinusoidal Coding of Audio and
Speech (SiCAS),” Submitted to Journal of the Audio
Engineering Society, 2003.

[3] J. S. Marques, L. B. Almeida, and J. M. Tribolet, “Har-
monic Coding at 4.8kb/s,” in Proc. IEEE ICASSP, Dec.
1990, pp. 17–20.

[4] R. J. McAulay and T. F. Quatieri, Sinusoidal Coding,
chapter 4, Elsevier Science B.V., 1995, From Speech
Coding and Synthesis, Edited by W.B Kleijn and K.K.
Paliwal.

[5] M. W. Macon and M. A. Clements, “Sinusoidal Mod-
eling and Modification of Unvoiced Speech,” in IEEE
Trans. on Speech and Audio Proc., Nov. 1997, vol. 5,
pp. 557–560.

[6] A. de Cheveigné and H. Kawahara, “YIN, a fundamen-
tal frequency estimator for speech and music,” in Jour-
nal of ASA, Apr. 2002, vol. 111(4).

[7] A. El-Jaroudi and J. Makhoul, “Discrete All-Pole Mod-
eling,” in IEEE Trans. on Signal Processing, 1991,
vol. 39, pp. 411–423.

[8] C. A. Rødbro, J. Jensen, and R. Heusdens, “Adaptive
time-segmentation of speech for packet loss channels,”
Tech. Rep., Delft University of Technology, 2003.

[9] O. A. Niamut, Audio Codec BanchMark Manual, De-
partment of Mediamatics, Delft University of Technol-
ogy, Jan. 2003.

I - 468

➡ ➠


