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Abstract-
Existing objective speech quality measurement algorithms still

fall short of the measurement accuracy that can be obtained
from subjective listening tests. We propose an approach that
uses statistical data mining techniques to improve the accuracy
of auditory-model based quality measurement algorithms. We
present the design of a novel measurement algorithm using the
multivariate adaptive regression splines (MARS) method. A large
set of speech distortion features is first created. MARS is used
to find a small set of features that provide the best estimate
(“model”) of speech quality. One appeal of the approach is that
the model size can scale with the amount of speech data available
for learning. In our simulations, the new algorithm furnishes sig-
nificant performance improvement over PESQ.

I. INTRODUCTION

Speech quality measurement is an important problem for
the telecommunication networks operators, especially in re-
cent and future years when voice can be transmitted in tandem
through different sub-networks, such as wireline, wireless and
IP networks. An accurate, robust, and low-complexity speech
quality estimation method that can be used in a variety of net-
work conditions would be very useful.

The most reliable method of measuring speech quality today
is subjective listening tests. A group of listeners are asked to
score the speech they hear according to the absolute categorical
rating (ACR) scale. The average of these scores, the subjective
mean opinion score (MOS), is widely used to characterize the
performance of speech codecs and transmission equipment and
networks. Subjective tests are time consuming and costly. In
contrast, objective methods can be implemented by computers
and embedded into network nodes for real-time speech quality
monitoring and control.

In this paper, we propose a new objective quality measure-
ment method. The human speech quality judgment process
can be divided into two parts. The first part is the conversion
of the received speech signal into auditory nerve excitations
for the brain. This part is well documented as auditory periph-
ery system models in the literature. The second part is cog-
nitive processing in the brain, where compact features related
to anomalies in the speech signal are extracted and integrated
to a final speech quality. This part is largely unknown and is
difficult to emulate. Existing objective speech quality methods
attempt to approximate this second part, often heuristically. In
this paper, we propose a new method based on statistical data
mining.

Statistical techniques have been highly successful in ad-

vancing the performance of speech recognizers, and likewise
can also be exploited to circumvent the need for an anthropo-
morphic cognitive model. Data mining as a form of machine
learning can help us to identify characteristics of speech sig-
nals that are well correlated with speech quality. Moreover,
data mining provides a means for us to design scalable quality
estimators. It is highly desirable to have an estimator that can
scale with the amount of data available for learning the cog-
nitive mapping. New forms of speech degradations arise as a
result of newly collected learning samples, new transmission
environments, new speech codecs, etc. Statistical techniques
enable us to design best-size estimators for a given amount of
learning data, and adapt to new data.

An important step of our proposed method is feature se-
lection and estimator optimization. We first extract a large
number of features from the distortion surface (over time-
frequency) between the original speech signal and the de-
graded speech signal. These features are context sensitive, i.e.,
they are based on local properties. Local properties are de-
termined via segmentation and classification. The features are
processed through statistical data mining methods for selection
and estimator optimization. In this paper, we focus on one par-
ticular data mining method: multivariate adaptive regression
splines (MARS) [6].

Our proposed method also has the advantage of simplicity
of implementation. The auditory processing model is sim-
plified, in comparison with existing quality estimation algo-
rithms. Furthermore, the computational requirement of feature
extraction and quality estimation is only a small fraction of the
auditory processing part.

II. EXISTING METHODS

Early speech quality estimators were for estimating the qual-
ity of waveform speech coders. The estimators rely on the
difference between the clean speech waveform and the coded
(degraded) speech waveform, effecting a waveform matching
criterion. Representative estimators include the signal-to-noise
ratio (SNR) and segmented SNR. Low-bit-rate speech coders
do not necessarily preserve the original waveform, so that
waveform matching is not appropriate. Speech quality mea-
surement algorithms based on auditory models do not require
waveform matching. Algorithms of this type include BSD
(Bark spectral distortion) [1], MNB (measuring normalizing
block) [2], PSQM [3], and PESQ (perceptual evaluation of
speech quality) [4]. BSD was the first to use a precise human
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auditory model for speech quality measurement, while ITU-T
standard P.862 PESQ offers the current “state-of-the-art” per-
formance.

A major difference among the above auditory-model based
methods is in the processing of the auditory error surface.
MNB uses a hierarchical structure of integration, over differ-
ent time and frequency interval lengths. PESQ uses a three step
integration, first over frequency, then over short-time utterance
intervals, and finally over the whole speech signal. Different
p values are used in the Lp norm integration performed in the
three steps. The integrations are ad hoc in nature and not based
on cognitive insight [5].

III. PROPOSED METHOD

The proposed method consists of two main blocks: auditory
processing and cognitive mapping.

A. Auditory processing

Human auditory processing is approximated by the follow-
ing processing steps. The speech signal is first divided into
overlapping frames. The spectral power density of each frame
is obtained using FFT. Hertz-to-Bark frequency transformation
is performed by summing an appropriate set of power density
coefficients. The summed powers are then converted to sub-
jective loudness using Zwicher’s law [9]. The final frequency
decomposed signal for each speech frame is in sone/Bark unit.
In our method, the signal is decomposed into to 7 subbands,
with each subband roughly 2.5 Bark wide, for telephone band-
width speech.

B. Cognitive Mapping - Feature Extraction

The design of the “cognitive” mapping in our proposed
scheme is shown in Fig. 1. We first extract a large number of
features from the auditory processed clean speech signal and
degraded speech signal.
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Fig. 1. Cognitive mapping design

The clean and degraded speech signals, decomposed into
subjective loudness distributions over bark frequency and time,
are first subtracted to form the difference. The difference over
the entire speech file corresponds to a distortion surface over
time-frequency. The goal of the cognitive mapping is to inte-
grate the distortion surface by segmentation, classification, and
simple integration.

The frequency decomposed 7-subband distortions for each
frame are classified by a two-stage process. The first stage is
time domain segmentation based on voice activity detection

(VAD) and voicing decisions. Each speech frame is classified
into one of the three categories: inactive, voiced, or unvoiced.
As a result, the distortion in each time-frequency bin gets clas-
sified into one of 3 × 7 = 21 classes.

The distortions from the first stage are further classified by
the severity of the frame-distortion, into three different cate-
gories, small, medium, and large, using simple thresholding.
After two stages of classification, the distortions can be as-
signed to one of 3 × 21 = 63 classes.

The distortions in each of the 63 classes are averaged using
L2 norm. The integrated distortion from each class is called
a feature. Other types of features calculated include rank-
ordered distortions, weighted mean distortion, probability of
each type of speech frames. A total of 209 features are avail-
able for data mining.

C. Cognitive Mapping - Data Mining Using MARS

MARS [6] builds large regression models over two process-
ing steps. The “forward” step recursively partitions the data
domain into smaller regions. In each recursion step, a feature
variable is selected for partitioning perpendicular to the vari-
able. Two spline “basis functions,” one for each of the two
newly created partition regions, are added to the model un-
der construction. The feature variable to choose and the point
of partition are found by brute-force search. An overly large
model is built initially. In the second “backward” step, basis
functions that contribute least to performance are deleted one
by one. MARS has been used to forecast recession [7], predict
customer spending, and predict radio-channel power [8].

From the large number of features extracted from the distor-
tion surface, MARS is used to find a small subset of features
to form the speech quality estimator. The subset of feature
variables, together with the particular manner of combining
them, are jointly optimized to produce the most statistically
consistent estimate of subjective MOS. The estimator, or “data
model,” is optimized to the “right” model size, for a given
amount of subjectively scored speech training data, using sta-
tistical validation techniques.

We note that the statistical data mining block in Fig. 1 is for
the design phase only. Once the feature selection and combin-
ing are optimized in the design phase, the block is replaced by
a simple mapping block.

IV. EXPERIMENT RESULTS

We compare our proposed method to the current state-of-
the-art, the ITU-T P.862 standard PESQ. The speech databases
used in our experiments include a mixed wireline/wireless
database, two wireless databases (IS-96A and IS-127 EVRC),
and seven coded speech databases (English, French, Japanese
and Italian) in ITU-T P-Series Supplement 23. We combine
these ten databases into a global database comprising 1760
speech file pairs. 90% of the sentence pairs in the global
database are randomly assigned to a training set and the rest
to a test set.
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Performance is measured by the correlation of the predicted
quality score to subjective MOS, and also by the root mean
square of the prediction residue (RMSE) after regression to
subjective MOS. Both the correlation and RMSE are calcu-
lated using per-condition averaged MOS, similar to the way
PESQ test results have been reported.

Table I shows a series of models as a function of training
ratio. Here training ratio is defined as the number of data sam-
ples in the training set divided by the “model size,” which is
the effective number of coefficients in the regression equation.
Both the training and test results for the MARS models with
different training ratios are shown, where R denotes correla-
tion and % denotes the percentage of reduction in RMSE rel-
ative to PESQ. For PESQ, we optimize a third-order regres-
sion polynomial on the training set to obtain R = 0.8212 and
RMSE = 0.4597 on the training set, and R = 0.7953 and
RMSE = 0.4689 on the test set. On our data, PESQ using
the optimized polynomial performs somewhat better than the
PESQ-LP mapping suggested in [12]. We choose a model that
has close performance on both the training and test sets. From
Table I, the model with training ratio of 28.8 is chosen for the
following experiments.

In Table II, we show the correlation and RMSE when the
model with training ratio of 28.8 is applied to each database.
We see a range of improvements for individual databases, with
the exception of the performance degradation incurred for the
Wireless IS-96A database. On the average, 19% reduction
in root-mean-square MOS prediction error relative to PESQ
is obtained. The scatter plots in Fig. 2 compare the corre-
lation with subjective MOS for ITU-T Sup23 Exp3A speech
database.

Let xi and yi denote realizations of random variables X and
Y , respectively. The correlation R is calculated by Pearson’s
formula:

R =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

∑
i(yi − ȳ)2

(1)

where x̄ is the average of xi, and ȳ is the average of yi. RMSE
is calculated by

RMSE =

√∑N
i=1(xi − yi)2

N
. (2)

Suppose the relationship between X and Y can be modeled as
Y = aX+ε+bias, where a is a scale factor, ε represents zero-
mean noise, and bias systematic bias. Then, R and RMSE
satisfy the following relationship:

RMSE2 = σ2(1 − R2) + bias2 (3)

where σ2 is the variance of the subjective MOS in a database.
The equation states that RMSE is the sum of unexplained vari-
ance in the linear regression model, and bias error between
subjective MOS and estimated MOS.

We use equation (3) to interpret the relationship between
the correlation and RMSE values in Table II. Table II shows
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(a) Proposed method

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Predicted MOS

S
ub

je
ct

iv
e 

M
O

S

(b) PESQ method

Fig. 2. Scatter plots of estimated MOS versus subjective MOS.

that PESQ incurs large RMSE on databases Exp1D, Exp3A,
and Exp3D, even though R is quite high for databases Exp1D
and Exp3D. The large RMSE can be attributed to biases be-
tween individual databases and the global database. (Note that
the correlation calculation excludes the biases between indi-
vidual databases and the global database.) The MARS model
is shown to be able to adapt to individual databases, thus re-
ducing the bias component of the RMSE.

We have compared the results obtained above with another
method of finding the best model size, namely n-fold cross
validation. The results are similar, and omitted for brevity.

We have also experimented with different database sizes to
investigate the scalability of the proposed method. A smaller
global database comprising only the seven ITU-T Supplement
23 databases is used. We obtained almost the same RMSE per-
formance gains as presented above. The model size is reduced,
and the training ratio changes to 34.8. Thus, the proposed
method can be scaled to incorporate new data as it becomes
available.

V. CONCLUSION

A new objective speech quality measurement algorithm de-
signed based on statistical data mining is introduced. In our
simulations, our algorithm provides greater measurement ac-
curacy than the PESQ standard algorithm. Our algorithm is
also computationally simple to implement and scalable to the
amount of data available.
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TABLE I

MARS MODEL RESULTS AS A FUNCTION OF TRAINING RATIO

Training Training Testing
ratio R RMSE % R RMSE %
4.66 0.9307 0.2947 35.9 0.8064 0.4644 1.0
5.19 0.9268 0.3026 34.2 0.8232 0.4423 5.7
9.18 0.9068 0.3397 26.1 0.8390 0.4199 10.5
9.46 0.9057 0.3416 25.7 0.8400 0.4185 10.7

16.25 0.8887 0.3694 19.6 0.8519 0.4026 14.1
28.8 0.8749 0.3902 15.1 0.8661 0.3844 18.0

30.17 0.8609 0.4087 11.1 0.8687 0.3923 16.3
39.6 0.8647 0.4047 12.0 0.8564 0.3978 15.2

TABLE II

PERFORMANCE COMPARISON: VARIATION OVER CONDITIONS ONLY

Correlation RMSE Percentage ReductionDatabase
Proposed Method PESQ Proposed Method PESQ in RMSE (%)

ITU-T Sup23 Exp1A (French) 0.9344 0.9360 0.2905 0.3709 21.7
ITU-T Sup23 Exp1D (Japanese) 0.9430 0.9568 0.2377 0.4655 48.9
ITU-T Sup23 Exp1O (English) 0.9690 0.9608 0.2446 0.2857 14.4
ITU-T Sup23 Exp3A (French) 0.9324 0.8833 0.3148 0.4886 35.6
ITU-T Sup23 Exp3C (Italian) 0.9451 0.9533 0.3248 0.3721 12.7

ITU-T Sup23 Exp3D (Japanese) 0.9383 0.9435 0.2968 0.4688 36.7
ITU-T Sup23 Exp3O (English) 0.9379 0.9302 0.2650 0.3452 23.2

Wireless EVRC 0.7968 0.8124 0.2361 0.2427 2.7
Wireless IS-96A 0.6471 0.6209 0.2433 0.2241 -8.6

Mixed 0.9264 0.9243 0.2620 0.2762 5.1
Average 19.24
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