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ABSTRACT
This paper introduces a modification of the commonly used post-

filter that improves performance when acoustic background noise

is present. The modification consists of replacing the nonadaptive

postfilter parameters that govern the degree of spectral emphasis

(commonly denoted as γ1 and γ2) with parameters that adapt to

the noise statistics. We describe an effective mapping from the

noise statistics to the emphasis parameters and provide a low com-

plexity noise estimation algorithm that is sufficient for this applica-

tion. The resulting noise-adaptive postfilter successfully attenuates

the background noise and naturally converges to the conventional

postfilter at high SNR conditions. Thus, the speech enhancement

problem is solved with minimal modification of legacy codecs,

since the existing structure of the speech codec is used. Test results

indicate that the presented algorithm significantly outperforms the

standard postfilter with non-adaptive parameters.

1. INTRODUCTION

The performance of a speech communication system can degrade

in the presence of acoustic background noise and quantization

noise. Due to their different nature, these two problems have been

addressed independently. The perceived quantization noise is typ-

ically reduced by means of a postfilter [1], [2]. Background noise

is attenuated by noise suppression systems such as Spectral Sub-

traction schemes and Wiener filtering [3], [4]. In this paper, we

achieve both goals simultaneously by means of a simple extension

of the conventional postfilter.

Postfilters are used in most speech-coding standards. They re-

duce the effect of quantization noise in a low bit-rate speech codec

by emphasizing the formant frequencies and deemphasizing the

spectral valleys. The transfer function of the most commonly used

postfilter [5] is given by

H(z) = GHs(z). (1)

In equation 1, G is a gain factor and Hs(z) is a filter of the form

Hs(z) =
A(z/γ1)

A(z/γ2)
(1 − µ z−1), (2)

where A(z) is the adaptive short term prediction-error filter, γ1 and

γ2 are fixed emphasis parameters that control the degree of spec-

tral emphasis (the frequency response) and µ controls the tilt com-

pensation filter. The factor G aims to compensate for the gain dif-

ference between synthesized speech s(n) and postfiltered speech
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sf (n). It is continuously adapted to the local-energy ratio of the

noisy and the unnormalized postfiltered signal, but not to the back-

ground noise statistics.

The fixed emphasis parameters γ1 and γ2 are usually opti-

mized based on listening tests for clean speech. To keep the values

of emphasis parameters and the spectral-tilt parameter µ constant

is consistent with the notion that the quantization noise of a codec

can be approximated as a white noise of known energy. However,

there is no apparent motivation for the current practice of using

the same parameter values for noisy input speech. In this paper,

we will show that adaptation of γ1 and γ2 to the noise level can

improve performance significantly.

The motivation for adapting the emphasis parameters γ1 and

γ2 is strengthened by a qualitative comparison of the behavior of a

postfilter and a Wiener filter. We note that a Wiener filter renders

an optimal (in the mean-square sense) clean-signal estimate from

a noisy signal that is the addition of independent, stationary noise

and clean-signal sources, given the power spectrum of the noise. A

Wiener filter attenuates spectral regions of the noisy signal increas-

ingly with decreasing SNR. In most practical settings this means

that the spectral valleys of the noisy speech signal are attenuated

and the formants structures are largely unaffected. The result is an

emphasis of formants over spectral valleys that becomes stronger

with decreasing overall SNR. The main qualitative difference be-

tween the Wiener filter and the conventional postfilter is that the

emphasis of formants over spectral valleys does not depend on

the noise level in the postfilter. This further motivates us to study

the usage of the postfilter for suppression of the background noise

through the adaptation of its parameters.

It has been noted in earlier work [5], [6] that the postfiltering

concept can also be used for the suppression of background noise.

However, no studies on how to design a postfilters for the applica-

tion of background noise suppression were undertaken.

2. POSTFILTER WITH NOISE-DEPENDENT EMPHASIS

The proposed structure of a noise-dependent postfilter is illustrated

in the block diagram of Figure 1. The reconstructed noisy sig-

nal is used as input to a routine that estimates the noise statistics.

The noise statistics are mapped to an appropriate set of emphasis

parameters. The emphasis parameters are used in a conventional

postfilter structure.

In this section, we discuss practical methods that can be used

to estimate the noise statistics and to obtain the mapping from the

noise statistics to the emphasis parameters. We start with the dis-

cussion of our estimation of the noise statistics and follow that by

a discussion of the mapping.
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Fig. 1. The general scheme of the noise-dependent postfilter.

2.1. Estimation of the Noise Statistics

Existing noise estimation algorithms, such as [7], provide detailed

estimates of the power spectral density of the acoustic background

noise. The high computational effort required for such algorithms

can be justified by the detailed description obtained. However, in

contrast to many conventional speech enhancement systems such

as Wiener filters, the enhancement by means of a postfilter is gov-

erned by only two parameters (γ1 and γ2) and this means that a

detailed characterization is not necessary. Moreover, the compu-

tational effort of the existing noise estimation algorithms is not

justified. Thus, we have chosen to characterize the noise statistics

by the SNR and the spectral tilt only. The spectral tilt is quanti-

fied as the predictor coefficient of a first-order predictor filter. The

results of section 3 confirm the soundness of this choice.

Our noise estimation algorithm is based on the same principle

as that of [7]. However, in our case only the noise energy and the

spectral tilt are estimated, significantly reducing the computational

burden. The main steps of the algorithm are given in Table 1.

1. Initialize energy buffer {Be(i)}i=0,··· ,N−1 and tilt

buffer {Bt(i)}i=0,··· ,N−1:

Be(i) = 0, i = 0, · · · , N − 1
Bt(i) = 0, i = 0, · · · , N − 1

2. For each successive frame j perform:

(a) Update energy and tilt buffers:

Be(i) = Be(i − 1), i = N, N − 1, · · · , 1
Be(0) = e(j)
Bt(i) = Bt(i − 1), i = N, N − 1, · · · , 1
Bt(0) = t(j)

(b) Obtain noise energy estimate ên(i) and noise tilt

estimate t̂n(i)

i. ên(i) = mini=0,··· ,N−1Be(i)

ii. t̂n(i) = Bt(argmini=0,··· ,N−1Be(i))

Table 1. Noise estimation algorithm. e(j) and t(j) are the energy

and tilt of the current frame and ên(j) and t̂n(j) are the estimated

noise energy and tilt.

Table 2 provides the estimation results of the noise spectra tilt

for a frame size of 20 ms and a buffer size of 30 frames aver-

aged over a database. The numbers were averaged over a database

that consisted of ten clean speech sentences from the TIMIT [8]

database that were contaminated with three types of stationary

noise sources. The values in the column ”True Tilt” were cal-

culated over the noise frames and the values in the column ”Esti-

mated Tilt” were given by the noise estimation algorithm described

above. Figure 2 illustrates the performance of the algorithm in

terms of SNR estimation. In this example, the clean speech sen-

tence is contaminated with white noise at 15 dB.

Noise Type True Tilt Estimated Tilt

Car 5 dB 0.99 0.96

Babble 10 dB 0.86 0.89

White 0 dB 0.04 0.08

Table 2. The average noise tilt.
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Fig. 2. True and estimated SNR.

2.2. Mapping from Noise Statistics to Emphasis Parameters

To adapt the postfilter to the noise statistics, a mapping from the

SNR and the spectral tilt to the emphasis parameters γ1 and γ2 was

implemented. Our objective was to create a mapping that selects

the emphasis parameters that result in a minimum mean spectral

distortion.

In our implementation we consider only postfiltering of the

spectral envelope. Since we do not consider the spectral fine struc-

ture, the spectral distortion measure must be based on the spec-

tral envelope only. We can use autoregressive (AR) modelling of

the clean and noisy speech for this purpose. Let A−1
y (ejω) be the

AR spectral envelope (corresponding to the transfer function of the

tenth-order autoregressive filter) of the noisy speech. Furthermore,

let A−1
s (ejω) be the tenth-order AR spectral envelope of the clean

speech. The standard log spectral distortion [9] then becomes

SD2 =
1

2π

∫ (
10 log10

|H(ejω)|2|A−1
y (ejω)|2

|A−1
s (ejω)|2

)2

dω. (3)

The mapping from the noise statistics (the SNR and the spec-

tral tilt) to the postfilter parameters is based on a table that links

a finite set of [SNR,tilt] pairs with a finite set of [γ1,γ2] pairs. To

limit the domain of the mapping to a finite set of SNR and spec-

tral tilt points, these input variables are subjected to uniform scalar

quantizers with a finite range. The uniform scalar quantizers have
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a step size of 1 dB for the SNR and 0.1 for the noise spectral tilt

(prediction coefficient) and had a range of 0−30 dB and 0.0−1.0
respectively. The step sizes were selected sufficiently small that

they did not affect the quality of the postfiltered speech. Similarly,

the range of the mapping is limited to a finite set of uniformly

spaced values for γ1 and γ2. The step size is 0.05 for both param-

eters and they ranged between 0 and 1. Again their values were

selected to not affect the quality of the postfiltered speech. The

mapping is then a discrete mapping that consist of quantizing the

values of SNR and tilt and selecting the optimal set of γ1 and γ2

from a table.

The mapping was obtained by a searching procedure over a

database of spectral descriptions. For each pair of SNR and spec-

tral tilt input variables that is in the domain of the mapping, we

search for the pair of emphasis parameters in the specified range

that results in the lowest mean spectral distortion over a database.

The procedure to obtain the mapping is shown in more detail in

Table 3. Due to the fast convergency of γ1 and γ2, the training

database used was based only on ten speech sentences from the

TIMIT database. The noise sources were artificially created.

1. Create a database of clean speech power spectra, calcu-

lated over 20 ms segments of clean speech.

2. Perform for all desired SNR and tilt sets:

(a) Add artificial noise power spectrum Pn of speci-

fied tilt to the clean power spectra Ps at the spec-

ified SNR.

(b) For the entire database, select from all allowed

parameter pairs γ1 and γ2 the pair that minimizes

the mean SD.

(c) Save the current input SNR level, spectral tilt and

the corresponding parameters γ1 and γ2 in the

lookup table.

Table 3. The algorithm to find the mapping. The algorithm oper-

ates on the power-spectral representation.

Figure 3 shows the mapping to the emphasis parameters as a

function of SNR at two different tilt values. The smooth evolu-

tion of the filter parameters with changing noise energy ensures

stable performance under errors in the estimated noise parame-

ters. It can be seen that the level of suppression depends on the

tilt of the spectrum. More attenuation is performed for the noise

sources with a flat spectrum. This is natural since the structure

of the postfilter leads to a similar noise suppression across the en-

tire spectrum. For practical noise sources, the performance of the

noise-dependent postfilter generally does not degrade for strongly

colored spectra since their their energy is generally concentrated

in a less audible regions.

In general, it is not beneficial to enhance the spectral structure

of the background noise signal. If the SNR for the current frame is

estimated to be below 5 dB, the frame is classified as nonspeech. In

that case the postfilter is not applied and only energy attenuation of

50% is performed. The suppression of the noise level in between

speech segments has significant impact on the overall performance

of the system.

Given the optimal γ1 and γ2 we determined the mapping from

the noise statistics, to obtain the gain factor G than minimizes the

SNR. That can be beneficial if the noise suppression system is
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Fig. 3. Evolution of γ1 and γ2 with SNR.

used for parameter estimation, for example in a pre-processor to

a speech recognition system. However, we found that for human

perception is preferable to preserve some residual noise level and

add additional constraints to smooth the level of attenuated noise

from frame to frame. For the experiments, described in section 3

we retained the estimation of G, used in postfilters.

In preliminary experiments we also allowed the tilt control

parameter µ to vary. However, we achieved the best perceptual

performance when only the emphasis parameters were varied and

when the µ fixed to the value 0.4. The reason is that when the noise

spectrum tilt changes rapidly, varying µ may cause the unpleasant

perceptual effect of nonconstant level of the residual noise.

3. PERFORMANCE

An A/B listening test has been carried out to evaluate the perfor-

mance of the proposed system. Two male and two female speakers

were arbitrarily chosen from the TIMIT database. The noisy sig-

nals were created with four real noise sources: car, rain, street and

wind noise added to the speech at 15, 20, 15 and 10 dB input SNR.

For the tests we used eight experienced listeners not familiar with

the system. The noise-dependent postfilter used in the tests use

the parameters γ1 and γ2 obtained by the algorithm described in

Table 3. The noise parameters were estimated with the noise esti-

mation algorithm described in Table 1.

We first tested the noise-dependent postfilter against the noise

suppression system included in the IS-127 TIA/EIA standard for

the Enhanced Variable Rate Codec (EVRC) [10]. Both systems

were extracted from the codecs and applied directly to the noisy

signal. The outputs of the systems were compared without further

processing. From Table 4 can be seen that the systems perform

essentially well, despite of the simplicity of the noise-dependent

postfilter. We also observed that this is valid for all noise types

and SNR values used in the test.

A comparison was performed between the ETSI Enhanced

Full Rate (EFR) codec [11] with its standard postfilter and the

EFR codec with the noise-dependent postfilter. The averaged re-
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System type Preference

Noise-dependent postfilter 56%

Noise suppression from the EVRC 44%

Table 4. System preference averaged over all speakers and noise

types.

sults are presented in Table 5. As expected, the conventional post-

filter performs poorly in the presence of the acoustic background

noise. The difference becomes more significant with increasing

the noise level as presented in Table 6. The results indicate that

existing codec structures are sufficiently powerful to attenuate the

background noise with a performance similar to that of separate

noise-suppression algorithms.

System type Preference

EFR + noise-dependent postfilter 75%

EFR + conventional postfilter 25%

Table 5. System preference averaged over all speakers and noise

types.

Noise Type System type Preference

Rain 20 dB EFR + noise-dependent postfilter 69%

EFR + conventional postfilter 31%

Wind 10 dB EFR + noise-dependent postfilter 88%

EFR + conventional postfilter 12%

Table 6. Preference for different noise types.

The evaluations were also performed in terms of objective

measures. The output of the EFR codec with and without noise-

dependent postfilter was processed with PESQ [12]. The PESQ

technology was not certified for this application, since the noise-

dependent postfilter approximates the behavior of a noise suppres-

sion system. However, from listening to the test samples we con-

cluded that the PESQ values closely follow the perceived quality.

Speech from five male and five female speakers from the

TIMIT database was used for the evaluations. Ten kinds of back-

ground noise signals were added to the clean speech sentences at

5 to 25 dB SNR. The MOS scores produced by the PESQ measure

are presented in Table 7. From the test results it is clear that the

EFR codec with the proposed noise-dependent postfilter performs

better than EFR with the conventional postfilter. The results may

improve further if the mapping is optimized for the output of the

codec tested.

Noise Type EFR, no EFR + EFR + noise-

postfilter postfilter dependent postfilter

White 15 dB 2.549 2.530 2.764

Street 20 dB 3.105 3.194 3.327

Wind 15 dB 3.192 3.127 3.328

Table 7. MOS values produced by PESQ.

4. CONCLUSIONS

Our results show that only small changes are needed in exist-

ing standard codecs to enhance significantly the quality of coded

speech in acoustic background noise. The improvement can be at-

tained by adapting the parameters of the postfilter that determine

the degree of spectral emphasis and the signal gain. The proposed

enhancement method is robust to a mismatch in the estimated noise

characteristics and requires insignificant additional computational

complexity. The new method does not affect the compatibility of

the codec with existing standards. It is likely that our method can

be improved further by replacing the currently used spectral dis-

tortion measures with psychoacoustically motivated measures.
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