
DIALOG TRAJECTORY ANALYSIS

A. Abella, J.H. Wright and A.L. Gorin

AT&T Labs – Research
{abella, jwright, algor}@research.att.com

ABSTRACT

Spoken dialog systems are becoming increasingly

common in deployed services. These systems are not

perfect, and are often deployed “open-loop” — lacking in

systematic procedures for diagnosing problems and for

making improvements. In order to target improvements

where they will have the biggest impact two things are

needed: first, methods and tools for detailed analysis of a

data feed of call logs and customer audio; second, an

interactive tool for presenting an intuitive view of the

results to those responsible for the application. In this

paper we discuss the paradigm and an implementation

through which we are able to close the loop between

system execution and system evolution by providing an

empirical dialog trajectory analysis represented via a

stochastic finite state machine. Novel graph analysis

algorithms are introduced for change detection,

compression and pruning for display, based on user-

interface objectives.

1. INTRODUCTION

Dialog systems exist in a variety of instantiations, each

allowing the user a different interaction medium. There

exist the touch-tone dialog systems that accept only

keypad input, requiring a user to select from a predefined

set of options that may or may not reflect the user’s

problem. There also exist directed dialog systems that

allow speech input but greatly constrain what the user can

say. Quite often these systems do not differ greatly from

traditional touch-tone systems. The most flexible of

dialog systems enable user initiative, allowing the user to

describe their problem in unconstrained fluent speech,

shifting the burden from the user to the system [1,2]. A

method for monitoring the user-system interaction is

required regardless of the type of dialog system.

There are two traditional ways to monitor deployed

spoken dialog systems. First, call monitoring enables

operations personnel to dial in and listen to a series of

calls made to the system. This has the advantage that the

listeners can hear the customers’ speech and assess the

experience from the customers’ viewpoint. However, the

sample of calls is bound to be very small, it may be

unrepresentative because of the timing of dial-in sessions,

and the listeners’ assessments will be subjective. Second,

summary reports are normally available on a daily or

weekly basis. Typically these give a breakdown of the

overall outcomes of all the calls into the system, including

the numbers of service completions, transfers to agents,

and hang-ups. But they are usually too coarse-grained to

be of diagnostic value when some parts of the system are

not performing well. The same is true of the usability

measures widely used for spoken dialog systems [3,4].

In this paper we describe new technology for

automatically “listening” to all calls, providing fine-

grained analysis and diagnosis, real-time system

evaluation and business intelligence. At the core of this

technology is an algorithm for creating an empirical call-

flow that enables the analysis and evaluation of the system

with respect to the call-flow specification.

The call-flow specifies the actions the application

should perform based on the user input and possibly

pertinent external information about the user that is

retrieved from a database. The call flow is organized into

sub-dialogs, each of which may involve a series of turns

with the user.

The empirical call-flow lays out the actual user’s path

through the call flow. It is generated for many users over

many interactions thus creating a representation of the

system behavior.

2. VISUALIZATION OF DIALOGS

2.1 Data feed

In order to close the loop between a deployed system and

its analysis, a regular data feed is required, with provision

for the operations personnel (who are responsible for the

system) to view the results. This is illustrated in Figure 1.

Dialog systems are equipped with the ability to record key

pieces of information to a call-log. What information is

recorded varies greatly from application to application.

Section 2.3 describes the challenges associated with key

pieces of information missing from the call-log. Currently

the call-logs generated by the production system are sent

via ftp to a database that organizes the call-logs and the

customer audio. The analysis and visualization tools mine

I - 4410-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

the database and generate results that are viewable on a

web server through an interactive web tool that the

operations personnel use to determine recommendations

for changes to the system.

Figure 1: Closing the loop between system and analysis.

2.2 Hot-Spot Detection

Figure 2: Finding sub-dialog hot-spots.

Some systems require long dialogs with customers,

extending over many turns, especially where the dialog is

tightly directed. These are best partitioned into sub-

dialogs using the call-flow as a guide. Each sub-dialog

must end in exactly one of four possible ways: proceed to

next (P), transfer to agent or to another system (T), end-

call by system (E), hang-up by caller (H), see Figure 2.

Not all of these may be implemented for all systems or

sub-dialogs. The first three are determined by the call-

flow, the last by the caller.

We are especially concerned with sub-dialogs that

have a relatively low rate of proceeding to the next sub-

dialog. If there is a large number of transfers from a

particular sub-dialog we want to be able to zoom in and

discover the precise reasons for this. Such hot-spots are

good candidates for system improvements via changes to

call-flow and models, implemented through system

releases.

2.3 Hidden Variables

Consider the question of how to represent distributions of

dialogs. The structure of a dialog (in general) is a

sequence of sub-dialogs, each a sequence of turns, each a

set of attributes with values. By projecting a sub-dialog

onto a sequence of one of these attributes to form a dialog

trajectory we are then able to sort, count, and view as a

stochastic finite state machine (FSM). If we project onto

two attributes we obtain two interleaved sequences, which

can be represented on the nodes and arcs of the FSM.

Ideally a node of the FSM would correspond with a

unique state within the call-flow. If the logging is

sufficiently comprehensive then this can be achieved with

little or no manual intervention. In practice, call-logs are

often incomplete, correspondence between call-flow and

call-log is often implicit, and the outcome of the call

(transfer to agent or another IVR, system end-call, user

hang-up without completion, service completion) is not

explicitly logged. The call-flow state and call-outcome

must then be treated as hidden variables, and algorithms

developed to infer these from observations.

3. METHODS AND TOOLS

3.1 From call-logs to FSM

The four essential steps in visualizing the dialogs are as

follows:

1. Either extract directly from each call-log (if possible)

or infer (if needed) interleaved sequences of two

chosen attributes that characterize the system state

and user response.

2. Append the call outcome (transfer to agent or another

IVR, system end-call, user hang-up without

completion, service completion). This completes the

dialog trajectories.

3. Sort, count, and convert the dialog trajectories into a

minimized stochastic FSM [5], with the system state

represented on the nodes and the user response on the

arcs. The call outcomes are encoded in the terminal

nodes.

4. Plot the FSM using a visualization package. For this

we used the Graphviz package [6].

This can be done daily, weekly, monthly, or depending on

need. Examples are shown in section 4.

3.2 Change Detection

The behavior of a system is likely to change over time, as

a result of system releases, user behavior and traffic

routing into the system. Detecting and highlighting these

changes requires two refinements. The first step is to

detect the changes, but we want to focus on the

independent sources of any change — consequent

changes are distracting. Here we consider only changes

relative to a chosen reference period, rather than trends or

cycles.

Mining and
visualization tools

Database of call-logs
and customer audio

Web server

Spoken dialog
system

Operations

Release

ftp

Browser

SD1 SD2 SD3 SD4

T T T

E E E H H H

P

SD5

PP

I - 442

➡ ➡

Figure 3: Change detection within a sub-dialog.

Because we are most interested in call outcomes, we first

test each sub-dialog terminal node F (see Figure 3) to find

out whether P(F) has significantly increased or decreased.

If so, we search among the arcs for contributory

influences. Arc a (from state S) is significant for terminal

node F if

P(a|S) has significantly changed in the same direction

as F (increased or decreased), and

P(F|S,a) is significantly greater than P(F|S,)

All of these tests are done using 2x2 contingency tables,

using exact methods for small counts and the standard chi-

square approximation for large counts.

These conditions ensure that an arc is significant for a

terminal node because of a local change at state S, and not

just because more trajectories are entering state S as a

result of other changes upstream. For display on the Web,

significant changes (arcs and nodes) are represented in

color.

3.3 Sub-Graph Compression

The sub-dialog trajectory FSMs can be quite large and it

is useful to be able to compress them to make the

significant changes more prominent. This is not the same

as pruning, where we delete arcs and nodes according to

some criterion. Instead, sub-graphs containing no

significant changes are compressed into a single arc

represented by a dashed line.

Figure 4(a) shows part of a sub-dialog FSM,

containing two significant arcs (bold arrows). The first

step is to label certain nodes as visible as follows:

Start and all terminal nodes

Nodes connected by significant arcs

All significant arcs are retained, and dashed arcs are

created wherever there are two or more arcs between

visible nodes. The result is shown in Figure 4(b). The

trajectory count associated with a dashed arc is

accumulated over the trajectories that pass through its

source and destination, excluding trajectories also passing

through source nodes of other arcs (including dashed arcs)

that terminate at the same destination.

3.4 Web Interface

An interactive web tool was created to enable the

operations personnel to view the results of the analysis.

Figure 4: Part of FSM, (a) uncompressed, (b)

compressed.

The web tool allows a user to view weekly dialog

trajectories. There are multiple views of the trajectories.

When a user selects a week they see an overview of the

empirical call-flow for the entire application, as shown in

Figure 5. Each node on this graph represents a sub-

dialog. The web tool enables the user to click on the node

and see the graph representing the sub-dialogs as shown

in Figure 6. The nodes on each sub-dialog graph

represent the grammars that were active. Clicking on the

grammar nodes reveals statistics about the grammar,

including the numbers of rejections, recognitions, and

silences. It also displays the top 6 recognition results.

Each sub-dialog page reveals two options to the user.

If there has been a significant change from the reference

to the current period then a button appears that enables the

user to view only the portion of the graph that has

changed significantly from the reference period. Also

associated with each page is an option for an expanded

view of the graph that displays the user utterances on the

arcs.

4. TROUBLE TICKET APPLICATION

4.1 Description of the Application

This is a dialog system for creating a trouble ticket that

details a problem with a telephone or data circuit. Coarse-

grained statistics are available that describe overall

numbers of transfers and hang-ups, but with no indication

of where or why. A daily data feed is received that

contains the recognizer call-logs. These call-logs contain

turn information including a time stamp, grammar name,

recognizer status and result. Missing from the call-logs

are the prompts that were played, the results of any touch-

tone input, and the call outcome. The state within the

call-flow at each turn, and the call-outcome, are hidden

variables that have to be inferred from the sequence of

grammars and user responses.

0

2 3

6 9

0

1 2

3 4

95 6

7 8

S

a F

(b)

(a)

I - 443

➡ ➡

4.2 Results

Figure 5 shows a sub-dialog overview plot, similar to

Figure 2. This and detailed plots for all the sub-dialogs

are generated automatically from the call-logs received

each day. The six sub-dialogs are as follows:

Phone or Circuit?: Determine whether problem is

with a phone or a data circuit.

Phone#: Get and confirm the trouble phone number.

Circuit#: Get and confirm the trouble circuit number.

Who?: Get contact information.

Problem?: Get details of the problem.

Where?: Get location information.

The numbers on the arcs are ficticious, but they illustrate

the approach. The proportion of calls reaching the

Where? sub-dialog has significantly increased compared

with a reference period (indicated by the + on the arc and

in the node), and the proportion of end-calls for this sub-

dialog has decreased (indicated by the –).

To understand this in greater detail we turn to the

trajectory plot for this sub-dialog, Figure 6. The Where?

sub-dialog is treated as a terminal node for this sub-

dialog. The full plot actually contains more than 17,000

arcs, so we use the compression procedure (section 3.3) to

highlight the arcs that significantly influence the terminal

nodes (section 3.2). Hang-ups are not displayed because

they have not significantly changed. We see two changes

that explain the observed shift. First at the start node,

fewer calls are routed through the Problem1? question,

with a greater number being routed through two

alternatives. This reflects a call-flow change. Second, in

eliciting a Called# a greater

proportion of users are

providing a valid 10-digit

number, with a smaller

proportion unsure.

Together these explain the

significant changes in the

end-call and Where?

terminal nodes.

5. CONCLUSIONS

We have described a new

procedure for visualization

of dialog trajectories, with

the ability to zoom in to

pinpoint hot spots.

Machine and customer

channels are represented on

the nodes and arcs of an

FSM. Novel graph

algorithms are introduced

for inferring hidden

variables, change detection,

and subgraph compression.

Acknowledgements

The authors would like to thank David Lerner, Tina

Grobe and Raymond Murry for their support and

enthusiasm. Also David Kapilow for help with data

extraction, and John Ellson for help with the Graphviz

package.

6. REFERENCES

[1] A.L.Gorin, G.Riccardi and J.H.Wright, “How May I

Help You?”, Speech Communication, 23: 113-127, 1997.

[2] A.L.Gorin, A.Abella, T.Alonso, G.Riccardi and

J.H.Wright, “Automated natural spoken dialog”, IEEE

Computer Magazine, 35(4):51-56, 2002.

[3] L.B.Larsen, “Assessment of spoken dialogue system

usability – what are we really measuring?”, Proc.

Eurospeech-03, Geneva, pp. 1945-1948, 2003.

[4] M.Walker, D.Litman, C.Kamm and A.Abella,

“PARADISE: A framework for evaluating spoken dialog

systems”, Proc. 35th Annual Meeting of ACL, pp.271-280,

1997.

[5] M.Mohri, F.C.Pereira and M.Riley, “Weighted finite-

state transducers in speech recognition”, Computer

Speech and Language, 16(1):69-88, 2002.

[6] E.R.Gansner and S.C.North, “An open graph

visualization system and its applications to software

engineering”, Software – Practice and Experience,

30(1):1203-1233, 2000.

Figure 5: Sub-dialogs overview.

Figure 6: Problem? sub-dialog, compressed.

I - 444

➡ ➠

