
EXTENDING BOOSTING FOR CALL CLASSIFICATION
USING WORD CONFUSION NETWORKS

Gokhan Tur, Dilek Hakkani-Tür, Giuseppe Riccardi

AT&T Labs-Research,
180 Park Avenue, Florham Park, NJ, USA�

gtur,dtur,dsp3 � @research.att.com

ABSTRACT

We are interested in the problem of robust understanding

from noisy spontaneous speech input. In goal driven human-

machine dialog, utterance classification is a key component

of the understanding process to determine the intent of the

speaker. In this paper we propose a novel algorithm for ex-

ploiting ASR word confidence scores for better utterance

classification of spoken utterances. Word confidence scores

for automatic speech recognition (ASR) provide estimates

for word error rates. While previous work has focused on

straightforward combination of word confidence scores into

Bayesian classifiers, in this paper we extend the mathemat-

ical formulation for Boosting classifiers. This extension of

the algorithm allows to exploit confidence scores from a 1-

best ASR output or from word confusion networks (WCNs).

We present methods for on-line and off-line score combi-

nations. The results we show are for a large database of

utterances collected using the AT&T VoiceTone � � spoken

dialog system. Our experiments show between 5%-10% re-

duction in error (� � 	 � � � � � � �) for a given � � � � � using

WCNs compared to ASR output.

1. INTRODUCTION

In goal driven human-machine dialog, utterance classifica-

tion is a key component of the understanding process to de-

termine the intent of the speaker, i.e. call-type. Both au-

tomatic speech recognition and utterance classification de-

coding are noisy and in general their noise statistics are not
correlated. Our goal is to exploit the error estimates from

ASR to improve the user intent classification.

Word confidence scores for ASR provide estimates for

word error rates. ASR confidence scores have been used

for improved rejection of noisy or not well formed utter-

ances [1, among others]. More generally, we can expect

to process a set of ASR hypotheses with confidence scores,

i.e word lattices (WL). Word lattices encode a very large

set of word strings and allow for a tighter integration of the

ASR search space and the classification process. A special

case of word lattices are the word confusion networks [2, 3].

WCNs carry the multi-string alignment information which

is missing from WL alone, have better word confidence

scores, and are more compact from a memory/process-time

point of view [3].

In previous work we have presented methods to exploit

word confidence scores [4, 5] and WCNs [5] for a Bayesian

classifier with feature selection. In this paper we propose a

novel algorithm for exploiting ASR word confidence scores

with an extended mathematical formulation for Boosting

family of classifiers. This extension allows to exploit confi-

dence scores from a 1-best ASR output or from WCNs.

In the next section, we briefly present our algorithm to

compute WCNs from WLs. After presenting the basics of

the Boosting classifier we have employed, we address how

we use WCNs for better classification. Section 5 includes

the experiments we have conducted.

2. WORD CONFUSION NETWORKS

Word confusion networks provide a very compact represen-

tation of multiple ASR hypotheses, preserving the richness

and accuracy of the word lattices. Typical structures of

WCNs compared to WLs is given in Figure 1. A detailed

explanation of our algorithm for composing WCNs from

WLs and the comparison of its performance with other ap-

proaches is presented in [3]. A summary of this algorithm

is as follows:

1. Compute the posterior probabilities for all transitions

in the lattice.
2. Extract a path from the lattice (which can be the best,

longest or a random path), and call this as the pivot of

the alignment.
3. Traverse the lattice, and align all the transitions with

the pivot, merging the transitions that correspond to

the same word (or label) and occur in the same time

interval (by summing their posterior probabilities).

The output of this algorithm is a more compact struc-

ture, called WCN.

I - 4370-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Lattice:

Word Confusion Network:

Fig. 1. Typical structures of WLs and WCNs.

3. BOOSTING

We begin by a review of Boosting-style algorithms. Boost-

ing aims to combine “weak” base classifiers to come up with

a “strong” classifier [6]. This is an iterative algorithm, and

in each iteration, a weak classifier is learned so as to mini-

mize the training error.

The algorithm generalized for multi-class and multi-label

classification is given in Figure 2. Let � denote the domain

of possible training examples and let � be a finite set of

classes of size � � � � � . For �
 � , let � � � for � � � to be

� � � � � � � � � � � �# � � � � %� �
The algorithm begins by initializing a uniform distribu-

tion, & (* � - � . , over training examples, � , and labels, � . After

each round this distribution is updated so that the example-

class combination which is easier to classify gets lower

weights and vice versa. The intended effect is to force the

weak learning algorithm to concentrate on examples and la-

bels that will be the most beneficial to the overall goal of

finding a highly accurate classification rule. The final strong

“strong” learner, / , is then nothing but a linear combination

of the individual weak learners, 0 2 .

4. EXPLOITING WORD CONFUSION NETWORKS

We propose various methods to exploit WCNs. In all of

them the main idea is to extend the feature space of the clas-

sification algorithm. The first method is independent of the

classifier used. It aims to filter or bin the features used ac-

cording to the word confidences obtained from the WCN.

The second and third ones are specific to Boosting. One of

them aims to change the weak learner found, and the other

to change the way weak learners are used during run-time.

4.1. ASR Output Filtering and Binning

The simple approach for handling ASR errors during clas-

sification is filtering words that have very low confidence

scores from the ASR output during run-time. In the cases

where the ASR output for the training data is also avail-

able, binning the training and test words using their confi-

3 Given the training data from the instance space 4 :* 6 (- � (. - 9 9 9 - * 6 < - � < . where 6 ? � � and � ?
 �3 Initialize the distribution & (* � - � . � (< E3 For each iteration F � � - 9 9 9 - L do

– Train a base learner, 0 2 , using distribution & 2 .
– Update

& 2 N (* � - � . � & 2 * � - � . Q R T U V W X Y [] U ^ _ W a Y bc 2
where

c 2 is a normalization factor and d 2 is the

weight of the base learner.3 Then the output of the final classifier is defined as:

/ * 6 - � . � g � i k * � * 6 - � . .
where

� * 6 - � . � mn
2 o (d 2 0 2 * 6 - � .

Fig. 2. The algorithm Adaboost.MH.

dence scores is another baseline approach. To implement

binning, each word p in the training data is replaced withp q if its confidence score is less than or equal to a thresh-

old F r , and p � if its confidence score is in * F ? R (- F ? � , whereF r t F (t 9 9 9 t F ? R (t F ? t 9 9 9 t F E � � .

4.2. Extended Boosting Algorithm

Schapire and Singer [6] have proved a bound on the training

error rate, i.e. Hamming Loss (HL), of / in the Boosting

algorithm. / { * / . ~ m�
2 o (

c 2 (1)

where
c 2 is the normalization factor computed on round F :c 2 � n

Y � �
<n

? o (& 2 * � - � . Q R T U V W X Y [] U ^ _ W a Y b
and HL is defined as the fraction of misclassified examples,� , and labels, � :

/ { * / . � �� �
n

Y
n

? � * 6 ? - � .
where

� * 6 ? - � . � � � � � / * 6 ? - � . %� � ? � �q � F 0 Q � p � g Q
The bound in Equation 1 is important, because in order

to minimize this training error, it is a reasonable approach

to minimize
c 2 on each round of Boosting. This leads to

criteria for finding weak hypotheses, 0 * 6 - � . for a given iter-

ation. Assume that weak learners, 0 , make their predictions

I - 438

➡ ➡

based on a partitioning of the domain � into disjoint blocks� � . Let � � � � 	 � � � � for � � � , then Schapire and Singer

have proved that the optimal � � � is given by:

� � � � �� � � � � � ��� � ��
where � � �! � "# % & (* , . / � 1 � � � � � 4 5 � # � � � �

Following this terminology, one can define the output of

the Boosting classifier for each class for a given utterance, � � � , as follows:9 � � � � � ;" < = > ? < A � <� �
where � <� � is the weak learner � � � for iteration C . In this work

we employed Boostexter [7] tool and used word � -grams as

features. In that framework, the weak learners partition the

domain with respect to the absence or presence of a feature.

For call classification, where the input of the classifier is the

ASR output, it is clear that instead of making the binary de-

cision of absence or presence of a feature, it makes more

sense to exploit confidences obtained from the word confu-

sion networks. This requires the following extension to the

above formula:9 � � � � � ;" < = > ? < A E � G � A � <� �
where p(j) is the probability of being in the partition � � , es-

timated by the confidence scores of the WCN. Note that this

change takes place only during run-time. We assume that

the weak learners are trained from transcribed data, hence

does not contain any confidence.

4.3. Boostexter with Scored Features

Boostexter has already the capability of exploiting the scores

associated to the features. These scores can be any real

number and is not limited to J K 4 � O . Instead of using two

partitions, (i.e. absence and presence of a feature), the weak

learner tries to come up with three partitions, i.e. absence,

presence with a score more (and less) than some threshold.

This threshold is also learned from training data automat-

ically so as to optimize the individual weak learner. Un-

like the previous approach, this method requires the con-

fidences for the training data is available and changes the

model learned.

5. EXPERIMENTS AND RESULTS

In order to evaluate the proposed methods to exploit WCNs,

we have used the utterances collected from an AT&T

VoiceTone P R spoken dialog application. In this applica-

tion, the users of the system are greeted by the open ended

Training Data Size 9094

Test Data Size 5171

Number of Call-Types 84

Call-Type Perplexity 32.64

Average Length 10.66

Table 1. Data characteristics used in the experiments.

prompt of How May I Help You?. The system tries to un-

derstand the responses and act upon them. We first describe

our data and the evaluation metrics used to compare model

performances, then show results.

5.1. Data

Table 1 summarizes the amount of data used for training

and testing for this application along with the total number

of call-types, average utterance length, and call-type per-

plexity. Perplexity is computed using the prior distribution

of the call-types in the training data.

5.2. Evaluation Metrics

Inspired by the information retrieval community, while eval-

uating the classification performance, we used mainly recall
and precision allowing multiple call-types. Recall is defined

as the proportion of all the true call-types that are correctly

detected by the classifier. It is obtained by dividing the num-

ber of true positives by the sum of true positives and false

negatives. Precision is defined as the proportion of all the

accepted call-types that are also true. It is obtained by divid-

ing true positives by the sum of true positives and false pos-

itives. True (False) positives are the number of call-types

for an utterance for which the detected call-type has got a

confidence above a given threshold, hence accepted, and is

(not) among the correct call-types. False negatives are the

number of call-types for an utterance for which the detected

call-type has got a confidence less than a threshold, hence

rejected, but is among the true call-types.

5.3. Results

The recall vs. precision numbers when we used the tran-

scriptions of utterances during training, and the ASR out-

put, as well as filtered ASR output of the test data is given

in Figure 3. To select the threshold for filtering words from

the ASR output of the test set, we computed confidence

scores for the words in the training set. We divided all the

words into bins using their scores. We selected the con-

fidence score for which the percentage of misrecognized

words is the same as the correctly recognized words. As

a result, K T U V was selected as the threshold, and 11.4% of

I - 439

➡ ➡

0.4 0.45 0.5 0.55 0.6 0.65
0.65

0.7

0.75

0.8

0.85

0.9

Recall

P
re

ci
si

on
ASR output
Filtered ASR output

Fig. 3. Recall versus Precision when low confidence words

are filtered from ASR output.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

Human Transcriptions
ASR 1−Best
WCN
WCN Upper−bound

Fig. 4. Results obtained by extending Boosting with feature

confidences.

the words are filtered from ASR output. Filtering low con-

fidence words resulted in slightly better Precision at high

Recall levels (see Figure 3). We also tried other thresholds,

but could not obtain better results. Binning the words using

their confidence scores did not result in significant improve-

ments.

Figure 4 presents our results using extended Boosting.

Top-most curve is obtained using human transcriptions and

bottom-most one using ASR 1-Best using traditional Boost-

ing. In order to show the potential improvement using WCNs,

we have first made an experiment by keeping all the � -

grams of the WCN occurring also in the human transcrip-

tions. This is the upper bound we can get by using WCNs,

shown by the curve with circles. The improvement using ex-

tended Boosting is shown by the curve just below that. As

seen for all thresholds, we obtained better recall and preci-

sion values than using ASR 1-Best, and for larger thresholds

we halved the way to the upper bound. On the average, for

a given recall, we decreased the error rate (� � � � 	 � � � �)

by 5%-10%.

Using Boostexter with scored features did not help, ac-

tually we have got significantly inferior results on the test

set although training set error rate was lower. This may be

due to lack of training data to generalize or determine the

threshold for each weak learner.

6. CONCLUSIONS

In this paper we have shown how to exploit the error esti-

mates from ASR to provide better utterance classification.

We presented a novel algorithm in the context of Boosting

classifiers. The mathematical formulation of the algorithm

allows to exploit confidence scores from a 1-best ASR out-

put or from WCNs. We show between 5%-10% relative

reduction in error rate using WCN compared to ASR output

for a large database of utterances collected using the AT&T

VoiceTone � � spoken dialog system for customer care.

7. ACKNOWLEDGMENTS

We would like to thank Rob Schapire and Mazin Rahim for

many useful discussions.

8. REFERENCES

[1] T. J. Hazen, S. Seneff, and J. Polifroni, “Recognition

confidence scoring and its use in speech understanding

systems,” Computer Speech and Language, , no. 16, pp.

49–67, 2002.
[2] L. Mangu, E. Brill, and A. Stolcke, “Finding consen-

sus in speech recognition: word error minimization and

other applications of confusion networks,” Computer
Speech and Language, vol. 14, no. 4, pp. 373–400,

2000.
[3] D. Hakkani-Tür and G. Riccardi, “A general algorithm

for word graph matrix decomposition,” in Proceedings
of the ICASSP, Hong Kong, May 2003.

[4] R. C. Rose, H. Yao, G. Riccardi, and J. H. Wright, “In-

tegration of utterance verification with statistical lan-

guage modeling and spoken language understanding,”

Speech Communication, vol. 34, pp. 321–331, 2001.
[5] G. Tur, J. Wright, A. Gorin, G. Riccardi, and

D. Hakkani-Tür, “Improving spoken language under-

standing using word confusion networks,” in Proceed-
ings of the ICSLP, Denver, CO, September 2002.

[6] R. E. Schapire and Y. Singer, “Improved boosting al-

gorithms using confidence-rated predictions,” Machine
Learning, vol. 37, no. 3, pp. 297–336, 1999.

[7] R. E. Schapire and Y. Singer, “Boostexter: A boosting-

based system for text categorization,” Machine Learn-
ing, vol. 39, no. 2/3, pp. 135–168, 2000.

I - 440

➡ ➠

