
A DISTRIBUTED FRAMEWORK FOR ENTERPRISE LEVEL SPEECH RECOGNITION
SERVICES

I. Arizmendi1 and R. C. Rose2

1AT&T Labs – Research, Florham Park, NJ 2McGill University, Dept. of ECE, Montreal, Canada
iker@research.att.com rose@ece.mcgill.ca

ABSTRACT

This paper presents methods for improving the efficiency
of automatic speech recognition (ASR) decoders in multi-
user applications. The methods involve allocating ASR
resources to service human-machine dialogs in deploy-
ments that make use of many low cost, commodity servers.
It is shown that even very simple strategies for efficient
allocation of ASR servers to incoming utterances has the
potential to double the capacity of a multi-user deploy-
ment. This is important because, while there has been
a great deal of work applied to increasing the efficiency
of individual ASR engines, there has been little effort
applied to increasing overall efficiency at peak loads in
multi-user scenarios.

1. INTRODUCTION

Many automatic speech recognition applications and ser-
vices are deployed in multi-user scenarios. In general,
the major challenge in designing a framework to sup-
port multi-user applications is to develop a system that
can scale to serve a large user population while simulta-
neously minimizing the degradation in quality of service
under peak load conditions [2].

Designing multi-user automatic speech recognition ap-
plications in particular involves additional issues that dis-
tinguish this case from more generic services. These is-
sues arise from the high variability in processing effort
that exists for ASR in human-machine dialog scenarios
which results from a number of sources. These sources
of variability include the infrequent occurrence of user
utterances as a fraction of the total length of the human-
machine dialog, the high variance in processing effort
that exists over time in an utterance, and the high variance
in processing effort that exists between different ASR
tasks. They will be discussed in more detail in Section 3.

This paper presents efficient methods for allocating
ASR resources to service human-machine dialogs in de-
ployments that make use of many low cost, commodity
servers. It is shown that exploiting knowledge of the
above sources of variability in allocating ASR resources
can lead to significant increases in resource utilization
and quality of service. While there has been a great deal
of effort devoted to increasing the efficiency of individual
ASR engines through techniques such as improved search

and pruning strategies [3], very little work has been re-
ported on techniques to increase efficiency in multi-user
ASR scenarios. An experimental study is presented demon-
strating the performance gains that are achievable for vary-
ing user populations and ASR resources. The study was
performed using a platform based on the single threaded,
non-blocking distributed speech enabled middleware frame-
work that was originally developed for client-server based
mobile ASR services [1].

The remainder of this paper is organized as follows.
Section 2 provides basic definitions of a call in the context
of human-machine dialogs and quality of service for ASR
servers. Section 3 presents a simple theoretical model
for efficient ASR resource allocation. This model will
be used to predict the total number of users that can be
supported by the proposed framework under different as-
sumptions while maintaining a given quality of service.
Finally, the experimental results are presented in section 4.

2. MULTI-USER ASR SCENARIO

There are several assumptions that are made in this work
concerning the means by which a user interacts with a
speech dialog system and how both ASR quality of ser-
vice (QOS) and system overload are defined. The most
general assumption about the overall implementation is
that calls are accepted from multiple users and are ser-
viced by pools of ASR servers each of which can return
a recognition string for any given utterance with some
latency. The manner in which these ASR servers are al-
located is described in Section 3.

A typical interaction, or call, in human-machine dia-
log applications consists of several steps. The user first
establishes a channel with the dialog system over a pub-
lic switched telephone network (PSTN) or VoIP connec-
tion. Once the channel is established, the user engages in
a dialog that consists of one or more turns during which
the user speaks to the system and the system responds
with information, requests for disambiguation, confirma-
tions, etc. During the periods in which the system issues
prompts to the user, the user will generally remain silent
and the system will be mostly idle with respect to that
channel. Finally, when the user is done, the channel is
closed and the call is complete.

The quality of service (QOS) of an overall implemen-
tation is defined here in terms of the latency a system ex-

I - 4210-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

hibits in generating a recognition result for an utterance.
For utterances processed on a server, there are a num-
ber of factors that contribute to this latency. When the
multi-server system is operating at near peak capacity,
the number of concurrent utterances, or utterance load,
the server is handling can be the dominant factor. The fo-
cus of this paper rests on the observation that, irrespective
of all other factors, implementing simple strategies for re-
ducing the instantaneous load on ASR servers will result
in a significant decrease in the average response latency
observed by the user.

A server’s maximum utterance load is defined here
as the maximum number of concurrent utterances which
can be processed with an acceptable average response la-
tency. A server that handles more than its maximum ut-
terance load is said to be overloaded.

3. ASR RESOURCE ALLOCATION STRATEGIES

This section presents two strategies for allocating ASR
servers to incoming calls. It will be shown that an intel-
ligent approach for allocating utterances to servers in a
typical multi-server deployment can dramatically reduce
the incidence of overload with respect to more commonly
used allocation strategies.

3.1. Call-Level Allocation

A common approach for indirectly balancing the utter-
ance load across the hardware resources an allocator has
at its disposal is call-level allocation. Using this ap-
proach, an allocator assigns a call to an ASR process run-
ning on a decoding server for the duration of the call. This
process is responsible for all feature extraction, voice ac-
tivity detection, and decoding. For example, consider the
hardware configuration shown in Figure 1. The figure
illustrates a typical setup where a source of call traffic
(a PBX, or VoIP gateway) routes user calls to ASR pro-
cesses residing on two servers. The time-lines in Figure 1
depict six calls, each containing two utterances per call
which are indicated by the rectangular labels along the
time-line. As calls arrive, a simple allocator tracks the
number of calls on each server and ensures that they all
handle an equal number of calls.

However, as the number of calls handled by an ASR
deployment increases, use of such a simple allocator can
lead to an unacceptably high utterance load on some servers
even when other servers are underutilized. In Figure 1
we see that during the highlighted interval the first server
will need to handle an utterance load of 3 even though
the second server is only handling a load of 1. Assuming
that the maximum utterance load for each server is two
and assuming that the processing of each utterance re-
quires identical computational complexity, the first server
will be overloaded. If the computational complexity of
the ASR task is sufficiently high, this may result in un-
acceptably high latencies for users assigned to the over-
loaded first server. A simple probabilistic argument can

Figure 1: Example of call-level allocation showing calls be-
ing routed directly to two ASR servers.

be made that generalizes the example to an arbitrary de-
ployment and makes this deficiency explicit. Assume,
for simplicity, that each utterance is of some fixed dura-
tion, d, and each call is of some fixed duration, D. A
call is then assumed to consist of L randomly occurring
utterances so that at any time t, the probability that an
utterance is active is given by

pt = L
d

D
. (1)

If we assume that a server that handles an utterance
load of more than Q is overloaded, then the probability
of overload if it services M calls, with M > Q, is given
by

Pq =
M∑

k=Q+1

(
M

k

)
pk

t (1 − pt)
M−k

. (2)

This is simply the probability that more than Q users out
of M calls on a server will speak at any given moment.
This probability is obviously zero when the server is han-
dling Q calls or less. The probability Pq can then be used
to calculate the probability, PC , that one or more servers
in a deployment of S servers (with S > 1), each handling
M calls, will be overloaded.

PC = 1 − (1 − Pq)
S (3)

In Section 4, Equations 2 and 3 will be used to determine
the number of calls, M , that can be supported by the call-
level allocation strategy when the probability of overload,
PC , is fixed at an acceptable value. It will be shown that
the fundamental difficulty with this approach arises from
the fact that the call-level allocator knows nothing of what
transpires within a call.

3.2. Utterance-Level Allocation

One way to reduce the probability of overload is to let
the allocator look within calls to determine when utter-
ances begin and end. This additional information can
be used to implement an allocator that assigns computa-
tional resources to utterances instead of entire calls. This
will be referred to as utterance-level allocation. Figure 2

I - 422

➡ ➡

illustrates this approach. In order to inspect the audio
stream of incoming calls the allocator is placed between
the source of call traffic and the ASR decoding servers.
In addition, feature extraction and voice activity detec-
tion are moved to the allocator so that it may determine
when utterances begin and end. Of course, it is possible
to perform feature extraction in several locations includ-
ing the client, the allocator as shown here, or in the ASR
server. From this vantage point the allocator can keep
track of activity across the deployment and intelligently
dispatch utterances and balance the incoming utterance
load. This allows that same deployment of S servers to
be viewed as a single virtual server that can handle an
aggregate utterance load of SQ concurrent utterances.

Figure 2: An utterance level allocator can look within di-
alogs to determine when utterances begin and end. This in-
formation is used balance the load on ASR decoding servers.

Under this model, an overload on any server can only
occur if more than SQ utterances are active, an event that
is considerably less likely than any individual server be-
ing overloaded. More specifically, for a deployment han-
dling SM calls, with SM > SQ, the probability, PU ,
that an overload will occur is given by

PU =
SM∑

k=SQ+1

(
SM
k

)
pk

t (1 − pt)
SM−k (4)

Equation 4 will be used in Section 4 to determine the
number of calls that can be supported by the utterance-
level allocation strategy when the probability of overload,
PU , is fixed at an acceptable value.

Note that although the allocator in this scenario acts
as a gateway to the decoding servers it generally is not a
bottleneck as the processing required to detect utterances
is very small [1]. However, we must introduce an alloca-
tor that can monitor all traffic, which may be a potential
bottleneck. We look at the effects of such an allocator in
Section 4.

3.3. Refining Utterance-Level Allocation

Incorporating knowledge of additional sources of vari-
ability in ASR computing effort can further improve the
efficiency of multi-user ASR deployments. Two exam-
ples of these sources of variability are illustrated by the
plots displayed in Figure 3. The first is the high vari-
ance in computational load exhibited by a decoder over

the length of an utterance. It is well known that the instan-
taneous branching factor associated with a given speech
recognition network can vary considerably. This fact,
coupled with the pruning strategies used in decoders, re-
sults in a large variation in the number of network arcs
that are active and must be processed at any given in-
stant. This is illustrated by the plot in Figure 3a which
displays the number of active network arcs in the decoder
plotted versus time for an example utterance in a 4000
word proper name recognition task. The plot demon-
strates the fact that the majority of the computing effort
in such tasks occurs over a fairly small portion of the ut-
terance. Knowledge of this time dependent variability in
the form of sample distributions could potentially be used
to allocate utterances such that peak processing demands
do not overlap.

Figure 3: a) Computational effort measured as the number
of active arcs versus time for an example utterance. The
distribution of the ratio of decoding time to audio duration
(CPU vs. audio) for b) digit task and c) LVCSR task.

The second source of variability comes from the vari-
ation in computational complexity that exists between dif-
ferent ASR tasks. This is illustrated by the histograms
displayed in Figures 3b and 3c. The plots display the dis-
tribution of average computational effort measured as the
ratio of the decoding time to the utterance duration. The
distributions correspond to continuous digit and large vo-
cabulary continuous speech recognition (LVCSR) tasks
with means of 0.022 and 0.44 respectively on a 2.6 GHz
server. As would be expected, the high perplexity stochas-
tic speech recognition network associated with the LVCSR
task demands a higher and more variable level of compu-
tational resources than the small vocabulary deterministic
network. Distributions characterizing this inter-task vari-
ability could be incorporated into server allocation strate-
gies. In addition to the obvious efficiency improvements
beyond those discussed in Section 3.2, servers with large
CPU caches can be dedicated to a single ASR task to
achieve improved cache utilization.

I - 423

➡ ➡

4. EXPERIMENTAL RESULTS

This section presents the results of two comparisons of
the call-level allocation (CLA) and utterance-level allo-
cation (ULA) strategies. The first compares the efficien-
cies of the CLA and ULA strategies that are predicted by
the model presented in Sections 3.1 and 3.2. The second
compares the two strategies using an actual deployment
where ASR decoders are run on multiple servers process-
ing utterances from an LVCSR task.

A comparison of the efficiencies as predicted by the
model can be made by plotting the number of incoming
calls with respect to the probabilities of overload, PC in
Equation 3 for the CLA strategy and PU in Equation 4
for the ULA strategy. The difference in overall efficiency
for the two strategies can be measured as the difference
between the number of calls that are supported at a given
probability of overload.

Figure 4 shows a plot of this comparison for an ex-
ample where the multiuser configurations illustrated in
Figures 1 and 2 are configured with ten ASR servers each
of which can service a maximum of four simultaneous
utterances without overload. It is also assumed that, on
the average, there are active utterances to be processed
by an ASR server for only one third, d

D = 1/3, of the
total duration of a call. It is clear from Figure 4 that, at
a probability of overload equal to 0.1, the utterance-level
allocation strategy can support approximately two times
the number of calls that can be supported by the call-level
allocation strategy.

Figure 4: Number of calls supported by CLA and ULA
strategies plotted versus predicted probability of overload.

A comparison of the efficiencies that are obtainable
in an actual deployment was made using the distributed
speech enabled middleware framework [1]. The frame-
work was configured with ten 1 GHz Linux based servers
running instances of the AT&T Watson ASR decoder.
Calls were formed from utterances that were natural lan-
guage queries to a spoken dialog system with speech ac-
tive for an average of 35 percent of the total call duration
and each server able to service approximately two simul-
taneous utterances without overload. A rather aggressive
load of four hundred of these calls were presented simul-
taneously to the multi-user system. An overall perfor-

mance measure was used that is derived from the latency
based QoS defined in Section 2. For a given number of
incoming calls, a count is obtained for the percentage of
utterances where the latency in generating a recognition
result falls below a specified threshold. Figure 5 shows a
plot of these percentages plotted versus the threshold that
is placed on the maximum response latency. The maxi-
mum response latency ranges from 0.5 to 3.0 sec. Curves
are shown for both the CLA and ULA strategies.

The system implemented with the ULA strategy is
shown in Figure 5 to support a significantly larger call
load than the CLA system. It can be seen that the ULA
strategy is able to service approximately twice as many
requests with a one second maximum latency.

Figure 5: Percentage of actual calls serviced within specified
latencies for CLA and ULA strategies.

5. CONCLUSIONS

This paper has demonstrated the importance of efficient
strategies for allocating ASR servers in multi-user ASR
applications. Section 3.3 outlined the sources of vari-
ability in processing effort that exists for ASR decoders
servicing human-machine dialogs. It was shown in Sec-
tion 4, using both theoretical and experimental results ob-
tained for actual dialog utterances, that simply using an
utterance-level strategy for assigning ASR servers there
is a potential for increasing the efficiency of the overall
multi-user ASR deployment by a factor of two. Future
work will involve the development of allocation strate-
gies that exploit additional knowledge of the variation in
computational complexity for human-machine dialogs.

6. REFERENCES
[1] R. C. Rose, I. Arizmendi, and S. Parthasarathy. An efficient

framework for robust mobile speech recognition services.
Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, April 2003.

[2] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA:
An architecture for well-conditioned, scalable internet ser-
vices. In Symposium on Operating Systems Principles,
pages 230–243, 2001.

[3] S. Wendt, G. A. Fink, and F. Kummert. Dynamic search-
space pruning for time-constrained speech recognition.
Proc. Int. Conf. on Spoken Language Processing, Septem-
ber 2002.

I - 424

➡ ➠

