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ABSTRACT 

Field speech data pose great challenges to statistical 

modeling because the speech signal is often intermixed 

with extraneous sounds and other environmental noises 

that are either too difficult to compensate dynamically or 

too expensive to collect sufficient data for proper offline 

training. In this paper, we propose a detection based 

method in which the speech recognizer can sharply tune to 

only the “meaningful” speech and gracefully ignore the 

“unwanted” audio segments. The method is designed to be 

integrated with the frame synchronous search for a single 

pass processing. In contrast to the conventional keyword 

spotting techniques, this integration allows the use of the 

language model for better predicting the detection targets 

during the search. To study its efficacy, we apply the 

framework to a spontaneous speech understanding 

application where cohesive phrases congruent to the 

domain semantics and application context are used as the 

salient feature for selective hearing. Experimental results 

on the effectiveness of the system in dealing with out of 

domain phrases and other spontaneous speech effects are 

encouraging.  

1. INTRODUCTION 

Despite the rapid evolvements in automatic speech 

recognition and understanding technology, the information 

theoretical model of speech communications, proposed 

three decades ago [7], remains largely unchanged. As 

illustrated in [7, Fig. 1][12, Fig. 2.1], the speaker is often 

viewed as employing source and channel coding 

mechanisms that “encode” a message into the speech 

waveform. As a result, a speech recognizer, be it human or 

machine, often is viewed as a “decoder” because its job is 

merely to reverse the coding process and recover the 

message encoded in the speech signal. A widely adopted 

principle in designing the decoder follows the maximum a

posteriori (MAP) decision rule. There the task of the 

decoder is to search for an outcome S’ that maximizes the 

posterior probability, i.e. 

)()|(maxarg)|(maxarg' SPSxPxSPS . (1) 

To pursue (1), the majority of the recognizers [6][12] use 

what we call the classification based approach, in which 

every acoustic frame in the speech signal x = (x1, x2…

xt…) is classified and its probabilistic score is accumulated 

unselectively. More specifically, we have 

q t tttt qSqPqxPSxP ),|()|()|( 1   (2) 

where q = (q1, q2… qt …) is a hidden, first order Markov 

process that attempts to classify each acoustic frame xt into 

a corresponding modeling unit that can yield a highest 

likelihood score P(xt | qt). Implied in (2) is an assumption 

that acoustic observations can be treated as statistically 

independent given the hidden process, an assumption 

known to be problematic. This assumption is relaxed by 

segmental modeling techniques [2][3] where each hidden 

variable represents a segment of the acoustic waveform 

rather than an individual frame, i.e., 
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These formulations have been widely demonstrated as 

effective in tackling large vocabulary continuous speech 

recognition (LVCSR) problems [6][12]. 

The classification based approach, though widely 

adopted, indeed poses great challenges to statistically 

modeling. First, because every frame counts, one needs to 

model all sort of acoustic conditions, including in and out 

of domain speech as well as non-speech sounds like lip 

and throat noises. For spontaneous speech, the modeling 

effort becomes even more demanding as speakers may 

stutter, hesitate, correct, or insert extraneous sounds such 

as uh, um, well, you know, etc., anywhere in an utterance. 

A common solution to this problem, known as keyword 

spotting [2][9], is to device “garbage” models to account 

for these audio segments. However, because of the diverse 

nature of the unwanted sounds, methods of obtaining high 

quality garbage models remain elusive. Secondly, a 

hallmark of the classification based approach, as 

highlighted in (2) or (3), is that every frame contributes 

equally to the overall score of a hypothesis S. As a result, 

when an utterance is largely composed of unwanted 

sounds, as is often the case in the field applications (e.g., 

“um….yes” where the “yes” makes up only a small portion 

of the signal), the score for the speech portions of the 

audio is often overwhelmed by their longer counterparts 

accounted for by the garbage models. Effectively, this 

leads to the hypotheses being compared against one 

another based on how well they match garbage models, a 

situation that is highly undesirable and potentially may 

serve as a major source of errors given the poor quality of 
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the scores produced by the garbage models. 

Although there is no reason why (1) may not be 

applied to explain human speech recognition as well, there 

is no evidence that the auditory system follows the same 

classification based approach as in (2) or (3). In fact, many 

studies have suggested [1][5][8][13] that the remarkable 

robustness exhibited by the auditory system may be 

attributed to the use of a detection based rather than a 

classification based mechanism. Applying detection based 

methods for automatic speech recognition has been 

attempted with various degrees of success [4][9][10][14]. 

In the previous works, however, detection techniques are 

often included as a disjoint processing stage where the 

detection algorithms are not necessarily designed to 

optimize the overall system performance described by (1), 

and therefore a multi-pass architecture is often used. In 

this paper, we propose a new formulation that tightly 

integrates the detection based algorithm into the MAP 

decision. As a result of the tight integration, we show 

realizing the detection based recognition in a single pass 

architecture is possible. In the following, we first elaborate 

the two contributions of the paper in Sec. 2 and 3, and in 

Sec. 4 describe some experimental results.  

2. DETECTION BASED DECISION 

A distinctive auditory processing principle is that a signal 

is often decomposed into components but the components 

are not always used together. For speech, it is as if only the 

relevant portions are detected and selected out of the 

waveform. This principle, when contrasted with the 

classification oriented keyword spotting techniques, 

highlights the appeal of a detection based method in that 

salient segments of speech can be extracted automatically 

without the need of garbage models. Applying the 

principle for the MAP decision rule of (1), we have 
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where  = {(ti, di): i = 0, 1, 2, …} represents a partition of 

the signal x into a sequence of landmarks, where the ith

landmark xi = (xti,…xti+di) occurrs at time ti with a duration 

di. The above equation bears resemblances to the 

classification based recognition based on segmental 

models described by (3) in that the units assumed to be 

statistically independent are much larger than adjacent 

acoustic frames. However, a notable difference between a 

detection based approach of (4) and a classification based 

approach of (3) is that a partition here does not have to 

cover every acoustic frame in the utterance, i.e., ti + di <

ti+1.

As indicated in (4), a detection based recognizer must 

address how the landmarks composing a partition are 

detected, and how the likelihood of each partition for a 

given hypothesis can be evaluated. In this work, sequential 

detection and language model techniques, respectively, are 

used for these purposes. 

3. RECURRENT SEQUENTIAL DETECTION 

Sequential detection is a technique that addresses whether 

an ongoing observation xi = (xt, xt+1, xt+2 ,...) has provided 

sufficient evidence to accept or reject a hypothesis, or such 

decision should be postponed pending more observations. 

Sequential detection is suitable for applications where 

immediate decisions amidst continuing observations are 

desired. In addition to reducing the false acceptance rate 

PF and false rejection rate PM as in regular detection 

problems, the latency to decision is also a factor to be 

considered for sequential detection. 

The mathematical foundation of sequential detection is 

well established. It can be shown [11] that the optimal 

decision rule for sequential detection is to conduct a 

sequential probabilistic ratio test (SPRT) as 
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where * denotes the alternative hypothesis of . The 

choice for the acceptance and rejection thresholds is 

bounded by 
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and is independent of the true probability distributions of 

P(xi | ) and P(xi | *). It is therefore possible to choose 

these two thresholds to match however low error rates at 

the price of lengthening the latency to decision di.

As sequential detection is designed to process ongoing 

observations, it is straightforward to integrate SPRT into 

the word or frame synchronous search process commonly 

implemented in LVCSR and realize (1) with (4) in a single 

pass architecture. The integration leads to recurrent

sequential detection for landmarks: Whenever the signal xi

is appended with a new observation, the SPR for every 

hypothesis is computed. The approximation of producing 

the distribution of the alternative hypothesis for utterance 

verification [9] can be adapted here, i.e., by using the 

weighted nth
-order mean of the competing hypotheses as 

the probability of the alternative hypothesis 

n
n

ii xPPPxP )|()(*)(*)|( .  (7) 

The search process consequently applies (5) to prune out 

all the hypotheses below the rejection threshold B, and 

continues to draw observation until a single winner 

surpassing the acceptance threshold A emerges, at which 

time all the lingering competitors are rejected. Note that 

(5) implies that, with sufficiently large n, there is likely to 

be only one winning hypothesis with SPR > 1 because 
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Each SPRT detects one landmark in a hypothesis . The 

statistically independent assumption made in (4) implies 

that the SPRT be recurrently applied to detect successive 

landmarks composing the hypothesis .

It is theoretically possible that a signal instance xi can 

cause the sequential detection to be indecisive indefinitely. 

In practice, an upper bound on the landmark duration can 

be introduced so that P(  | S) = 0 if some di in  exceeds 

the limit. The timeout mechanism, together with the 

winner-take-all nature of the recurrent sequential 

detection, plays a key role in alleviating the reliance on the 

garbage models. For sharply tuned models, an extraneous 

sound segment, being a poor match to any of the speech 

models, produces no clear winner, resulting in the SPR for 

contending landmark hypotheses to wander between the 

decision thresholds. These hypotheses are eventually 

turned away either when the timeout expires or when the 

observations progress to the “meaningful” acoustic 

segment and a corresponding landmark is detected. 

4. CASE STUDY: MIPAD EXPERIMENTS

Although the detection based framework described in Sec. 

2 and 3 may be potentially applied to speech recognition 

in general, we first assessed its effectiveness on a speech 

understanding task. In this paper we further report the 

experimental results based on the MiPad scenarios 

described in [15]. MiPad is a mobile device with a 

personal information management (PIM) application. The

recognition target S for MiPad is the user’s intention for 

the PIM tasks, which usually consists of a collection of 

semantic objects representing the command (e.g. “send 

email”) and the parameters for the command (e.g. “to Alex

with subject: progress report”).

The choice of landmarks in (4) is obviously application 

dependent. Since MiPad is a speech understanding task, 

we choose the phrase segments composing the semantic 

objects as the landmarks for detection. For example, the 

landmarks for the email creation task include the 

expressions for the email creation command, the 

recipients, the subject, the body of the message, but not the 

semantic objects such as date, time, location, etc., that are 

relevant to calendar or meeting tasks. This domain 

knowledge is crafted into the semantic language model 

P( | S) using the unified probabilistic context free 

grammar (PCFG) and N-gram technique [15] and is woven 

into the frame synchronous search process described in 

Sec. 3. The semantic language model dynamically predicts 

for each hypothesis which semantic objects to detect 

during the decoding processing. As an example illustrated 

in Fig. 1., when the landmark of check schedule command 

is detected, the hypothesis will automatically tune off the 

detection of  irrelevant semantic objects such as email 

subject, recipients, etc., considerably narrowing the search 

space dynamically. The use of the prediction power of a 

semantic language model and the tight integration of the 

domain knowledge during search manifest themselves as 

significant contrasts to the conventional keyword spotting 

based methods for detection based recognition (e.g., [9]). 

Two versions of MiPad, one using the classification 

based and the other, detection based recognition
1
, were 

implemented for user studies. The complexity of the 

acoustic models,  the language models, the graphical 

layouts, and the development time devoted to fine tune the 

free parameters were kept roughly in par with each other. 

Both versions ran on a Toshiba 3500 Tablet PC using the 

built-in microphone located on the lower left corner of the 

display. Non-stationary noises, such as those from the hard 

disk spinning and the pen tapping the screen, were audible 

in the recordings. The experiments were all conducted in a 

moderately noisy office for which no prior speech data 

were available for acoustic training or adaptation. A 

generic gender and speaker independent acoustic model 

with the online cepstral mean normalization was used for 

all the experiments. For the classification based 

recognizer, a simple phone loop was used as the garbage 

model. The prior P(S) in (1) was set to assume the uniform 

distribution for the experiments. Despite the efforts to 

make the two systems comparable, the nature of a 

classification versus a detection algorithms, however, does 

introduce distinctive behaviors. On the classification based 

system, MiPad shows the understanding result only after 

the user has finished the whole utterance, while the 

sequential detection algorithm allows the detection based 

system to display understanding outcome immediately 

1
Video available at http://research.microsoft.com/srg/videos

under MIPAD demo 2003.

show me my schedule

Check Appt 

Command 

S1 = Show Email  S2 = Check Appt  

Email 

Property 
Appt 

PropertyShow Email 

Command

Fig. 1. An illustration of two competing hypotheses being 
composed as words are recognized. Dotted lines represent 
the semantic objects predicted by the semantic language 
model. When the tie breaker, in this example the word 
“schedule”, emerges, the SPR of S2 trumps the alternative 
hypotheses, leading to the search process to detect only the 
landmarks for S2 for the rest of the utterance. 

wn … 

Date Place
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after a semantic object is accepted. As a result, the 

detection based MiPad can employ a dynamic prompting 

strategy and solicit fewer out of domain utterances [16]. 

The experiments previously conducted for the user 

interface studies [16] also provide some insights into the 

efficacy of the detection based approach to recognition. 

We utilized (6) to determine the thresholds for a false 

acceptance rate PF at 5% and the decision timeout (Sec. 3) 

at 1.5 seconds. This leads to an average per user semantic 

object recognition accuracy at 57.03% with the standard 

deviation 12.78%. The low accuracy is primarily due to a 

high false rejection rate as the accuracy rate is the 

percentage of the correctly recognized semantic objects 

minus the substitution, the false acceptance, and the false 

rejection errors. The large fluctuations among test subjects 

are reflected in the standard deviation. In contrast, the 

classification based system has an average accuracy 65.7% 

with standard deviation 10.75% after the poor recognition 

on full sentences instigating a change in user’s speaking 

patterns (see discussion below). The t-test shows the 

difference in accuracy rate is not statistically significant 

(t=0.729, p=0.253, df=4) due to the large variances in 

recognition accuracy across users. 

The resilience of the detection based system to the 

spontaneous speech effects seems to have enticed the users 

to employ longer, and hence fewer, utterances to complete 

a task. The average number of semantic objects per 

utterance is 6.17 and 2.02 for the detection and the 

classification based systems, respectively. With the 

standard deviations at 1.26 and 0.36, the t-test shows the 

difference is statistically significant (t=5.49, p=0.0025).

The average number of utterances used to complete a task 

is 1.33 versus 6.75, with standard deviations 0.144 and 

1.80, respectively. The difference is also statistically 

significant under t-test (t=5.187, p=0.003). These data 

provide a quantitative support for the observations that 

users for the classification based system would quickly 

switch to short utterances narrowly targeted at individual 

input fields after several attempts of using longer and more 

naturally phrased sentences failed. In contrast, users of the 

detection based system often would repeat, in the same 

utterance, the phrase segments that are not detected, 

making the sentence structure even more non grammatical 

and more spontaneous. Surprisingly, users did not seem to 

be bothered by including corrections in their sentences, 

even though the overall recognition accuracy is not high in 

the detection based system. This is supported objectively 

from the data that users did not switch to shorter 

utterances as with the classification system, and 

subjectively by the feedback that they like the highly 

interactive nature of the detection based system. Users 

only pointed out that the latency to decision (di) seemed 

unpredictable and the occasionally long latency could be 

irritating. The unwieldy latency, based on the theory of 

sequential detection (Sec. 2) might originate from the poor 

models of P(x | ) and P(x | *) used in the experiments. 

This highlights the need of good acoustic models because 

of the role they play in the latency, even though they do 

not influence the choice of detection thresholds as 

indicated in (6). 

REFERENCES

[1] Allen J. “How do humans processing and recognize 

speech?” IEEE Trans. Speech and Audio Processing, pp. 

567—577, October, 1994. 

[2] Gish H., Ng K. “A segmental speech model with 

applications to word spotting.” in Proc. IEEE ICASSP-

1993, Minneapolis, MN, 1993. 

[3] Hon H.-W., Wang K. “Unified frame and segment based 

models for automatic speech recognition.” in Proc. IEEE 

ICASSP-2000, Istanbul, Turkey, 2000. 

[4] Hori T., et al. “Paraphrasing spontaneous speech using 

weighted finite state transducers.” in Proc. ISCA & IEEE 

Workshop on spontaneous speech processing and

recognition, Tokyo, Japan, 2003. 

[5] Houtsma A. J. M, Rossing T. D., and Wagenaars W. M. 

Auditory demonstrations, Institute for Perception Research 

(IPO), Eindhoven, Netherlands and the Acoustical Society 

of America, New York, NY, 1987. 

[6] Huang X. D., Acero A., and Hon H.-W. Spoken Language 

Processing, Prentice Hall, NJ, 2001. 

[7] Jelinek F., Bahl L. R., and Mercer R. L. “Design of a 

linguistic statistical decoder for the recognition of 

continuous speech.” IEEE Trans. Information Theory, pp. 

250–256, May 1975. 

[8] Juang B. H., Furui S. “Automatic recognition and 

understanding of spoken language – a first step toward 

natural human-machine communication.” Proceedings of 

IEEE, pp. 1142 – 1165, August, 2000. 

[9] Kawahara T., Lee C.-H., and Juang B.-H. “Flexible speech 

understanding based on combined key-phrase detection and 

verification.” IEEE Trans. Speech and Audio Processing,

pp. 558–568, November, 1998. 

[10] Niyogo R., Mitra P., and Sondhi M. M. “A detection 

framework for locating phonetic events.” in Proc. ICSLP-

98, Sydney Australia, 1998. 

[11] Poor H. V. An introduction to signal detection and 

estimation, Springer-Verlag, New York, NY, 1988. 

[12] Rabiner L. R., Juang B.-H. Fundamentals of Speech 

Recognition, Prentice Hall, NJ, 1993. 

[13] Wang K., Shamma S. A. “Spectral shape analysis in the 

central auditory system.” IEEE Trans. Speech and Audio 

Processing, pp. 382—395, September, 1995. 

[14] Wang K., Goblirsch D. M. “Extracting dynamic features 

using the stochastic matching pursuit algorithm for speech 

event detection.” in Proc. IEEE ASRU Workshop, Santa 

Barbara, CA, 1997. 

[15] Wang K., “Semantic object synchronous decoding in SALT 

for highly interactive speech interface”, in Proc. 

Eurospeech-2003, Geneva, Switzerland, 2003. 

[16] Wang K. “A study on semantic synchronous understanding 

on speech interface design.” in Proc. UIST-2003,

Vancouver, BC, 2003. 

I - 416

➡ ➠


