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ABSTRACT

This paper presents a novel feature extraction method to
improve the performance of speaker identification systems.
The proposed feature has a form of a typical conventional
feature, mel frequency cepstral coefficients (MFCC), but a
flexible segmentation to reduce spectral mismatch between
training and testing processes. Specifically, the length and
shift size of the analysis frame are determined by a pitch
synchronous method, pitch synchronous MFCC (PSMFCC).
To verify the performance of the new feature, we measure
the cepstral distortion between training and testing and also
perform closed set speaker identification tests. With text-
independent and text-dependent experiments, the proposed
algorithm provides 44.3 % and 26.7 % relative improvement
respectively.

1. INTRODUCTION

The performance of speaker recognition systems has been
improved significantly due to world-wide efforts by many
researchers. State of the art speaker recognition systems
typically use mel frequency cepstral coefficient (MFCC) and
adopt Gaussian mixture models (GMM) for speaker model-
ing. In this paper, we focus on the feature extraction method.
A dominant feature for speaker recognition, MFCC, has
been shown to achieve fairly good performance not only in
speaker recognition but also in speech recognition [1][2].
Since MFCC is obtained by spectral analysis, it is crucial to
estimate spectral information with high accuracy. Conven-
tionally, the window for spectral analysis has a fixed length
of 20~30 ms and a fixed shift of 10~15 ms under the as-
sumption that the signal itself is quasi-stationary [2]. In the
real speech signal analysis, however, there are some pos-
sibilities of causing spectral distortion due to mismatch of
the position of the analysis frame and the non-stationarity
in that frame. The drawbacks of conventional MFCC have

This work was supported by the Biometrics Engineering Research
Center (KOSEF).

0-7803-8484-9/04/$20.00 ©2004 IEEE

I-405

been issued in both of speaker and speech recognition field
[31[4].

In this paper, we propose a new method, called pitch
synchronous mel frequency cepstral coefficient (PSMFCC),
to overcome those drawbacks. The rationale behind the pro-
posed scheme is that the distance of features between train-
ing and test could be minimized by using a flexible segmen-
tation of the analysis frame. Retaining the consideration
on human auditory characteristics on frequency domain, we
apply the new pitch synchronous segmentation scheme to
conventional features.

2. SPECTRAL DISTORTION
IN FIXED FRAME ANALYSIS

Fig. 1 illustrates the conventional method of speech signal
analysis. This analysis shows that exactly the same signal
can give different results depending on the framing, which
might cause critical performance degradation. The signal,
x(n), in the figure is vowel-like artificial speech whose pitch
period is 60 samples and assuming that there is a delay of d
samples between training and test analysis frames, s(n) and

Frame Size M

Fig. 1. Conventional signal segmentation method.
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t(n), that is

s(n) = z(n)w(n)

t(n) = z(n + d)w(n) M

where w(n) is a window of length M.
The spectral distance is given by
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Now, we decompose the signal in the frame into two
parts, one is the purely periodic portion of the signal, s,(n)
and t,(n), and the other is the remaining part of signal,
sr(n) and t,.(n).

_)sp(n), for0<n< NP
s(n) = {sr(n), for NP <n< M ©)
p(n), for0<n< NP
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where N is a number of pitch period in one frame and P is
the pitch period. Using DFT properties, and s, and #, can
be also represented as
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where X (k) and W (k) represent the fourier transform of
z(n) and w(n) respectively.
From above, we can rewrite S(w) and T'(w) as
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Fig. 2. Cepstral distance versus time delay
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Even though S(w) and T(w) are derived from the same
signal, they differ due to the delay d. Trivially, the distance
D(S,T)=0, when d=0. In case of M=NP , the last term of
S(w) and T(w) will be eliminated. This fact is very attrac-
tive because the mismatch of the position of the frame is
inevitable to some degree. It indicates that by removing the
redundant signal, which is outside of periodic components,
the spectral distortion could be minimized.

3. A PROPOSED FEATURE, PSMFCC

In this section, we explain the details of the proposed method.
Fig. 2 shows the cepstral distortion obtained by varying the
number of samples of analysis frame delay in Fig. 1 with
following criterion [2].

N¢
Do = Y |Creference(i) = Cltayea D ()

i=1

where C' is a feature vector, N ¢ is the feature order, d is the
number of delayed samples whose range is —P/2 < d <
P/2.

The dashed line depicts the cepstral distance when we
use a fixed length (256 in this paper) of analysis frame for
feature extraction. The solid line illustrates the distance us-
ing the proposed method, with only periodic signal obtained
by setting M/ = 3P (180 in this paper). The distance of the
pitch synchronous analysis is very low and stable even when
it has long deviation, but that of the fixed length analysis is
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Fig. 3. A basic diagram for the proposed method

much higher and unstable. Even though the low cepstral dis-
tance does not directly guarantee a low error rate in speaker
recognition, the smaller variability of the proposed scheme
is a clear advantage. Therefore, this figure implicates the ad-
vantage of the pitch synchronous feature extraction method.

Fig.3 shows the basic idea of how we extract the pro-
posed feature PSMFCC. When the speech signal comes into
the system, the pitch contour of the signal is estimated and
the signal is segmented in a pitch synchronous way. We use
a very reliable pitch extraction algorithm described in [5].
Based on the pitch information, we segment the speech sig-
nal with flexibility. In very noisy environments, the pitch
estimation may fail. However, even if the pitch estimator
totally fails, the scheme basically reduces to scheme with
non-optimized frame length, and we expect the performance
to be similar to that of conventional MFCC.

For the length of the analysis frame, as we have shown
in the previous section, we choose integer multiples (3 in
this paper) of the pitch period for the length of analysis
frame to minimize the spectral distortion. Concerning one
pitch period of speech signal is an impulse response of vocal
tract [3], we shift the analysis frame according to the pitch
period in this paper. To eliminate possible distortion due to
the discontinuity, we also find the minimum energy points
through a full-search algorithm before feature extraction.

The following steps are basically identical with the con-
ventional MFCC procedure [2]. Finally, we extract 12 di-

mensional PSMFCC and no delta cepstral coefficient is used.

4. EXPERIMENT

4.1. Speaker Models

We use the Gaussian mixture model (GMM) to represent the
characteristics of each speaker [1][6]. For a D-dimensional

feature vector denoted as x_, the mixture density for speaker
s is defined as

M
p () =Y 0 (x) (10)
=1

The density is a weighted sum of M component Gaus-

sian densities, bgs) (x) , each parameterized by a mean vec-
(s)

tor, i;”’ , and covariance matrix, AES) ;
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The mixture weights, p;

constrain Zf\il pgs) = 1. We use the expectation maxi-
mization (EM) algorithm for the mixtures to get maximum
likelihood [1][6]. Diagonal covariance matrices are used
for the models. For an initialization process, we assign the

speaker model parameters by choosing random samples [6].

, is determined to satisfy the

4.2. The Closed-set Speaker Identification
4.2.1. Text-independent Experiment

We use the YOHO DB for the text-independent experiment.
The sampling rate is 8 kHz and stored in 12-bit resolution.
There are 138 speakers (32 female, 106 male); for each
speaker there are 4 sessions of 24 utterances for enrollment
and 10 sessions of 4 utterances for verification. More details
are given in [7]. Although the YOHO DB was designed for
speaker verification, we use it for the speaker identification
task in this paper [1]. Speaker models for each speaker are
modeled by a 64 component GMM from enrollment session
1 through 4 (average of 6 minutes). Identification test is
done with 10 verification sessions consisting of four utter-
ances for each speaker (average of 15 seconds). This setup
is based on the previous work in [1]. To verify the advantage
of the proposed method, we perform similar experiments
with reduced enrollment time to test the algorithms under
more difficult conditions. We choose the 24 utterances in
the first session as train data (average of 1.5 minutes) for 16
component GMM speaker models, and same test data as in
the previous experiment.

4.2.2. Text-dependent Experiment

We use the Soongsil University DB for the text-dependent
experiment. Contents are fixed for every speaker. The sam-
pling rate for the speech files is 16 kHz. There are 195
speakers (97 female, 98 male); for each speaker, there are 3
sessions of 5 utterances each, and each session was recorded
in every other week. We use 5 utterances of the first two ses-
sions (average 20 seconds) for training and the rest of 5 ut-
terances for testing (average 2 seconds each). Each speaker
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model is trained using 10 components of GMM of which is
decided experimentally.

5. SIMULATION RESULTS

Table 1 shows the error rate of text-independent experiment

with full enrollment database. The proposed PSMFCC fea-

ture provides overall 33.3 % relative improvement. To ver-

ify the superiority of the proposed method, we perform sim-

ilar experiments but by reducing enrollment data. Table 2

shows the error rate of text-independent experiment with

only one session of enrollment database. The proposed PSM-
FCC feature provides overall 44.3 % (61.9 % for female,

17.9 % for male) improvement.

Table 3 shows the error rate of text-dependent exper-
iment. The proposed PSMFCC provides overall 26.7 %
(28.0 % for female, 25.0 % for male) relative improvement.
Previous experiments for another database in English demon-
strated that performance was worse for the female speak-
ers [1][3][7]. Similar results are achieved also with Korean
speakers.

The results confirm that the proposed PSMFCC pro-

Table 1. Error Rate of Text-Independent Experiments to the
Full Set Training.

Error Rate MFCC | PSMFCC Relative
(%) Improvement
Female 0.94 0.31 66.7
Male 0.28 0.28 0.00
Overall 0.44 0.29 333

Table 2. Error Rate of Text-Independent Experiments to the

Subset Training.

Error Rate MFCC | PSMFCC Relative
(%) Improvement
Female 13.8 5.02 61.9
Male 2.64 2.17 17.9
Overall 5.08 2.83 44.3

Table 3. Error Rate of the Text-Dependent Experiments.

Error Rate MFCC | PSMFCC Relative
(%) Improvement
Female 5.00 3.60 28.0
Male 4.08 3.06 25.0
Overall 4.55 3.33 26.7

vides the improvement of speaker identification performance
in both text-dependent and text-independent experiments.
Note that both experiments show higher improvements for
the female speakers compared to the male speakers. We ar-
gue that part of the reason is that the pitch synchronous seg-
mentation method can provide more detailed and accurate
features for female speakers, whose pitch periods fluctuate
with a large variation.

6. CONCLUSION

This paper proposed a new feature extraction method called

PSMFCC, which was based on pitch synchronous spectral

analysis. We verified the performance of the new feature by

closed set speaker identification experiments; text-dependent
and text-independent. In both experiments, the performance

of speaker identification was significantly improved com-

pared to the conventional MFCC feature, especially for fe-

male speakers. The robustness of the proposed feature in

adverse conditions such as noisy or channel distorted envi-

ronments should be verified in the future.
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